mirror of
https://github.com/msberends/AMR.git
synced 2024-12-27 10:06:12 +01:00
183 lines
7.8 KiB
R
Executable File
183 lines
7.8 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE: #
|
|
# AMR: An R Package for Working with Antimicrobial Resistance Data #
|
|
# #
|
|
# SOURCE CODE: #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# PLEASE CITE THIS SOFTWARE AS: #
|
|
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
|
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
|
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
|
# https://doi.org/10.18637/jss.v104.i03 #
|
|
# #
|
|
# Developed at the University of Groningen and the University Medical #
|
|
# Center Groningen in The Netherlands, in collaboration with many #
|
|
# colleagues from around the world, see our website. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' Principal Component Analysis (for AMR)
|
|
#'
|
|
#' Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables.
|
|
#' @param x a [data.frame] containing [numeric] columns
|
|
#' @param ... columns of `x` to be selected for PCA, can be unquoted since it supports quasiquotation.
|
|
#' @inheritParams stats::prcomp
|
|
#' @details The [pca()] function takes a [data.frame] as input and performs the actual PCA with the \R function [prcomp()].
|
|
#'
|
|
#' The result of the [pca()] function is a [prcomp] object, with an additional attribute `non_numeric_cols` which is a vector with the column names of all columns that do not contain [numeric] values. These are probably the groups and labels, and will be used by [ggplot_pca()].
|
|
#' @return An object of classes [pca] and [prcomp]
|
|
#' @importFrom stats prcomp
|
|
#' @export
|
|
#' @examples
|
|
#' # `example_isolates` is a data set available in the AMR package.
|
|
#' # See ?example_isolates.
|
|
#'
|
|
#' \donttest{
|
|
#' if (require("dplyr")) {
|
|
#' # calculate the resistance per group first
|
|
#' resistance_data <- example_isolates %>%
|
|
#' group_by(
|
|
#' order = mo_order(mo), # group on anything, like order
|
|
#' genus = mo_genus(mo)
|
|
#' ) %>% # and genus as we do here;
|
|
#' filter(n() >= 30) %>% # filter on only 30 results per group
|
|
#' summarise_if(is.sir, resistance) # then get resistance of all drugs
|
|
#'
|
|
#' # now conduct PCA for certain antimicrobial drugs
|
|
#' pca_result <- resistance_data %>%
|
|
#' pca(AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT)
|
|
#'
|
|
#' pca_result
|
|
#' summary(pca_result)
|
|
#'
|
|
#' # old base R plotting method:
|
|
#' biplot(pca_result)
|
|
#' # new ggplot2 plotting method using this package:
|
|
#' if (require("ggplot2")) {
|
|
#' ggplot_pca(pca_result)
|
|
#'
|
|
#' ggplot_pca(pca_result) +
|
|
#' scale_colour_viridis_d() +
|
|
#' labs(title = "Title here")
|
|
#' }
|
|
#' }
|
|
#' }
|
|
pca <- function(x,
|
|
...,
|
|
retx = TRUE,
|
|
center = TRUE,
|
|
scale. = TRUE,
|
|
tol = NULL,
|
|
rank. = NULL) {
|
|
meet_criteria(x, allow_class = "data.frame")
|
|
meet_criteria(retx, allow_class = "logical", has_length = 1)
|
|
meet_criteria(center, allow_class = "logical", has_length = 1)
|
|
meet_criteria(scale., allow_class = "logical", has_length = 1)
|
|
meet_criteria(tol, allow_class = "numeric", has_length = 1, allow_NULL = TRUE)
|
|
meet_criteria(rank., allow_class = "numeric", has_length = 1, allow_NULL = TRUE)
|
|
|
|
# unset data.table, tibble, etc.
|
|
# also removes groups made by dplyr::group_by
|
|
x <- as.data.frame(x, stringsAsFactors = FALSE)
|
|
x.bak <- x
|
|
|
|
# defuse R expressions, this replaces rlang::enquos()
|
|
dots <- substitute(list(...))
|
|
if (length(dots) > 1) {
|
|
new_list <- list(0)
|
|
for (i in seq_len(length(dots) - 1)) {
|
|
new_list[[i]] <- tryCatch(eval(dots[[i + 1]], envir = x),
|
|
error = function(e) stop(e$message, call. = FALSE)
|
|
)
|
|
if (length(new_list[[i]]) == 1) {
|
|
if (is.character(new_list[[i]]) && new_list[[i]] %in% colnames(x)) {
|
|
# this is to support quoted variables: df %pm>% pca("mycol1", "mycol2")
|
|
new_list[[i]] <- x[, new_list[[i]]]
|
|
} else {
|
|
# remove item - it's an argument like `center`
|
|
new_list[[i]] <- NULL
|
|
}
|
|
}
|
|
}
|
|
|
|
x <- as.data.frame(new_list, stringsAsFactors = FALSE)
|
|
if (any(vapply(FUN.VALUE = logical(1), x, function(y) !is.numeric(y)))) {
|
|
warning_("in `pca()`: be sure to first calculate the resistance (or susceptibility) of variables with antimicrobial test results, since PCA works with numeric variables only. See Examples in ?pca.", call = FALSE)
|
|
}
|
|
|
|
# set column names
|
|
tryCatch(colnames(x) <- as.character(dots)[2:length(dots)],
|
|
error = function(e) warning("column names could not be set")
|
|
)
|
|
|
|
# keep only numeric columns
|
|
x <- x[, vapply(FUN.VALUE = logical(1), x, function(y) is.numeric(y)), drop = FALSE]
|
|
# bind the data set with the non-numeric columns
|
|
x <- cbind(x.bak[, vapply(FUN.VALUE = logical(1), x.bak, function(y) !is.numeric(y) & !all(is.na(y))), drop = FALSE], x)
|
|
}
|
|
|
|
x <- pm_ungroup(x) # would otherwise select the grouping vars
|
|
x <- x[rowSums(is.na(x)) == 0, ] # remove columns containing NAs
|
|
|
|
pca_data <- x[, which(vapply(FUN.VALUE = logical(1), x, function(x) is.numeric(x))), drop = FALSE]
|
|
|
|
message_(
|
|
"Columns selected for PCA: ", vector_and(font_bold(colnames(pca_data), collapse = NULL), quotes = TRUE),
|
|
". Total observations available: ", nrow(pca_data), "."
|
|
)
|
|
|
|
if (getRversion() < "3.4.0") {
|
|
# stats::prcomp prior to 3.4.0 does not have the 'rank.' argument
|
|
pca_model <- prcomp(pca_data, retx = retx, center = center, scale. = scale., tol = tol)
|
|
} else {
|
|
pca_model <- prcomp(pca_data, retx = retx, center = center, scale. = scale., tol = tol, rank. = rank.)
|
|
}
|
|
groups <- x[, vapply(FUN.VALUE = logical(1), x, function(y) !is.numeric(y) & !all(is.na(y))), drop = FALSE]
|
|
rownames(groups) <- NULL
|
|
attr(pca_model, "non_numeric_cols") <- groups
|
|
class(pca_model) <- c("pca", class(pca_model))
|
|
pca_model
|
|
}
|
|
|
|
#' @method print pca
|
|
#' @export
|
|
#' @noRd
|
|
print.pca <- function(x, ...) {
|
|
a <- attributes(x)$non_numeric_cols
|
|
if (!is.null(a)) {
|
|
print_pca_group(a)
|
|
class(x) <- class(x)[class(x) != "pca"]
|
|
}
|
|
print(x, ...)
|
|
}
|
|
|
|
#' @method summary pca
|
|
#' @export
|
|
#' @noRd
|
|
summary.pca <- function(object, ...) {
|
|
a <- attributes(object)$non_numeric_cols
|
|
if (!is.null(a)) {
|
|
print_pca_group(a)
|
|
class(object) <- class(object)[class(object) != "pca"]
|
|
}
|
|
summary(object, ...)
|
|
}
|
|
|
|
print_pca_group <- function(a) {
|
|
grps <- sort(unique(a[, 1, drop = TRUE]))
|
|
cat("Groups (n=", length(grps), ", named as '", colnames(a)[1], "'):\n", sep = "")
|
|
print(grps)
|
|
cat("\n")
|
|
}
|