1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-30 11:57:51 +02:00
Files
.github
R
data
data-raw
docs
articles
AMR_files
EUCAST_files
MDR_files
PCA_files
SPSS_files
WHONET_files
benchmarks_files
datasets_files
resistance_predict_files
welcome_to_AMR_files
AMR.html
EUCAST.html
MDR.html
PCA.html
SPSS.html
WHONET.html
benchmarks.html
datasets.html
index.html
resistance_predict.html
welcome_to_AMR.html
news
reference
404.html
LICENSE-text.html
apple-touch-icon-120x120.png
apple-touch-icon-152x152.png
apple-touch-icon-180x180.png
apple-touch-icon-60x60.png
apple-touch-icon-76x76.png
apple-touch-icon.png
authors.html
bootstrap-toc.css
bootstrap-toc.js
countries.png
countries_large.png
cover_r4ds.png
docsearch.css
docsearch.js
extra.css
extra.js
favicon-16x16.png
favicon-32x32.png
favicon.ico
import1.png
import2.png
index.html
lifecycle_archived.svg
lifecycle_dormant.svg
lifecycle_experimental.svg
lifecycle_maturing.svg
lifecycle_questioning.svg
lifecycle_retired.svg
lifecycle_stable.svg
lifecycle_tidyverse.svg
link.svg
logo.png
logo_certe.png
logo_eh1h.png
logo_interreg.png
logo_rug.png
logo_umcg.png
package-logo.png
pkgdown.css
pkgdown.js
pkgdown.yml
sitemap.xml
survey.html
whonet.png
works_great_on.png
inst
man
pkgdown
tests
vignettes
.Rbuildignore
.gitignore
DESCRIPTION
LICENSE
NAMESPACE
NEWS.md
README.md
_pkgdown.yml
codecov.yml
cran-comments.md
git_development.sh
git_merge.sh
git_siteonly.sh
index.md
AMR/docs/articles/PCA.html

356 lines
23 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>How to conduct principal component analysis (PCA) for AMR • AMR (for R)</title>
<!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png">
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png">
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png">
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png">
<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.4.0/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous">
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css">
<script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet">
<script src="../extra.js"></script><meta property="og:title" content="How to conduct principal component analysis (PCA) for AMR">
<meta property="og:description" content="AMR">
<meta property="og:image" content="https://msberends.github.io/AMR/logo.png">
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:creator" content="@msberends">
<meta name="twitter:site" content="@univgroningen">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-article">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.1.9030</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../index.html">
<span class="fa fa-home"></span>
Home
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="fa fa-question-circle"></span>
How to
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="../articles/AMR.html">
<span class="fa fa-directions"></span>
Conduct AMR analysis
</a>
</li>
<li>
<a href="../articles/resistance_predict.html">
<span class="fa fa-dice"></span>
Predict antimicrobial resistance
</a>
</li>
<li>
<a href="../articles/datasets.html">
<span class="fa fa-database"></span>
Data sets for download / own use
</a>
</li>
<li>
<a href="../articles/PCA.html">
<span class="fa fa-compress"></span>
Conduct principal component analysis for AMR
</a>
</li>
<li>
<a href="../articles/MDR.html">
<span class="fa fa-skull-crossbones"></span>
Determine multi-drug resistance (MDR)
</a>
</li>
<li>
<a href="../articles/WHONET.html">
<span class="fa fa-globe-americas"></span>
Work with WHONET data
</a>
</li>
<li>
<a href="../articles/SPSS.html">
<span class="fa fa-file-upload"></span>
Import data from SPSS/SAS/Stata
</a>
</li>
<li>
<a href="../articles/EUCAST.html">
<span class="fa fa-exchange-alt"></span>
Apply EUCAST rules
</a>
</li>
<li>
<a href="../reference/mo_property.html">
<span class="fa fa-bug"></span>
Get properties of a microorganism
</a>
</li>
<li>
<a href="../reference/ab_property.html">
<span class="fa fa-capsules"></span>
Get properties of an antibiotic
</a>
</li>
<li>
<a href="../articles/benchmarks.html">
<span class="fa fa-shipping-fast"></span>
Other: benchmarks
</a>
</li>
</ul>
</li>
<li>
<a href="../reference/index.html">
<span class="fa fa-book-open"></span>
Manual
</a>
</li>
<li>
<a href="../authors.html">
<span class="fa fa-users"></span>
Authors
</a>
</li>
<li>
<a href="../news/index.html">
<span class="far fa-newspaper"></span>
Changelog
</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/msberends/AMR" class="external-link">
<span class="fab fa-github"></span>
Source Code
</a>
</li>
</ul>
</div>
<!--/.nav-collapse -->
</div>
<!--/.container -->
</div>
<!--/.navbar -->
</header><script src="PCA_files/header-attrs-2.9/header-attrs.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>How to conduct principal component analysis (PCA) for AMR</h1>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/main/vignettes/PCA.Rmd" class="external-link"><code>vignettes/PCA.Rmd</code></a></small>
<div class="hidden name"><code>PCA.Rmd</code></div>
</div>
<p><strong>NOTE: This page will be updated soon, as the pca() function is currently being developed.</strong></p>
<div id="introduction" class="section level1">
<h1 class="hasAnchor">
<a href="#introduction" class="anchor" aria-hidden="true"></a>Introduction</h1>
</div>
<div id="transforming" class="section level1">
<h1 class="hasAnchor">
<a href="#transforming" class="anchor" aria-hidden="true"></a>Transforming</h1>
<p>For PCA, we need to transform our AMR data first. This is what the <code>example_isolates</code> data set in this package looks like:</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://github.com/msberends/AMR" class="external-link">AMR</a></span><span class="op">)</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://dplyr.tidyverse.org" class="external-link">dplyr</a></span><span class="op">)</span>
<span class="fu"><a href="https://pillar.r-lib.org/reference/glimpse.html" class="external-link">glimpse</a></span><span class="op">(</span><span class="va">example_isolates</span><span class="op">)</span>
<span class="co"># Rows: 2,000</span>
<span class="co"># Columns: 49</span>
<span class="co"># $ date &lt;date&gt; 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002-…</span>
<span class="co"># $ hospital_id &lt;fct&gt; D, D, B, B, B, B, D, D, B, B, D, D, D, D, D, B, B, B, …</span>
<span class="co"># $ ward_icu &lt;lgl&gt; FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TR…</span>
<span class="co"># $ ward_clinical &lt;lgl&gt; TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FA…</span>
<span class="co"># $ ward_outpatient &lt;lgl&gt; FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE…</span>
<span class="co"># $ age &lt;dbl&gt; 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 71…</span>
<span class="co"># $ gender &lt;chr&gt; "F", "F", "F", "F", "F", "F", "M", "M", "F", "F", "M",…</span>
<span class="co"># $ patient_id &lt;chr&gt; "A77334", "A77334", "067927", "067927", "067927", "067…</span>
<span class="co"># $ mo &lt;mo&gt; "B_ESCHR_COLI", "B_ESCHR_COLI", "B_STPHY_EPDR", "B_STPH…</span>
<span class="co"># $ PEN &lt;rsi&gt; R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, …</span>
<span class="co"># $ OXA &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ FLC &lt;rsi&gt; NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA, …</span>
<span class="co"># $ AMX &lt;rsi&gt; NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, …</span>
<span class="co"># $ AMC &lt;rsi&gt; I, I, NA, NA, NA, NA, S, S, NA, NA, S, S, I, I, R, I, …</span>
<span class="co"># $ AMP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, …</span>
<span class="co"># $ TZP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ CZO &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ FEP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ CXM &lt;rsi&gt; I, I, R, R, R, R, S, S, R, S, S, S, S, S, NA, S, S, R,…</span>
<span class="co"># $ FOX &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ CTX &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, …</span>
<span class="co"># $ CAZ &lt;rsi&gt; NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, S, S…</span>
<span class="co"># $ CRO &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, …</span>
<span class="co"># $ GEN &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ TOB &lt;rsi&gt; NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, S, S, NA…</span>
<span class="co"># $ AMK &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ KAN &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ TMP &lt;rsi&gt; R, R, S, S, R, R, R, R, S, S, NA, NA, S, S, S, S, S, R…</span>
<span class="co"># $ SXT &lt;rsi&gt; R, R, S, S, NA, NA, NA, NA, S, S, NA, NA, S, S, S, S, …</span>
<span class="co"># $ NIT &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ FOS &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ LNZ &lt;rsi&gt; R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R,…</span>
<span class="co"># $ CIP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, …</span>
<span class="co"># $ MFX &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ VAN &lt;rsi&gt; R, R, S, S, S, S, S, S, S, S, NA, NA, R, R, R, R, R, S…</span>
<span class="co"># $ TEC &lt;rsi&gt; R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R,…</span>
<span class="co"># $ TCY &lt;rsi&gt; R, R, S, S, S, S, S, S, S, I, S, S, NA, NA, I, R, R, S…</span>
<span class="co"># $ TGC &lt;rsi&gt; NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, …</span>
<span class="co"># $ DOX &lt;rsi&gt; NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, …</span>
<span class="co"># $ ERY &lt;rsi&gt; R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, …</span>
<span class="co"># $ CLI &lt;rsi&gt; R, R, NA, NA, NA, R, NA, NA, NA, NA, NA, NA, R, R, R, …</span>
<span class="co"># $ AZM &lt;rsi&gt; R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, …</span>
<span class="co"># $ IPM &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, …</span>
<span class="co"># $ MEM &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ MTR &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ CHL &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ COL &lt;rsi&gt; NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, R, R…</span>
<span class="co"># $ MUP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…</span>
<span class="co"># $ RIF &lt;rsi&gt; R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R,…</span></code></pre></div>
<p>Now to transform this to a data set with only resistance percentages per taxonomic order and genus:</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">resistance_data</span> <span class="op">&lt;-</span> <span class="va">example_isolates</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html" class="external-link">group_by</a></span><span class="op">(</span>order <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_order</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span>, <span class="co"># group on anything, like order</span>
genus <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span> <span class="op">%&gt;%</span> <span class="co"># and genus as we do here</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/summarise_all.html" class="external-link">summarise_if</a></span><span class="op">(</span><span class="va">is.rsi</span>, <span class="va">resistance</span><span class="op">)</span> <span class="op">%&gt;%</span> <span class="co"># then get resistance of all drugs</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/select.html" class="external-link">select</a></span><span class="op">(</span><span class="va">order</span>, <span class="va">genus</span>, <span class="va">AMC</span>, <span class="va">CXM</span>, <span class="va">CTX</span>,
<span class="va">CAZ</span>, <span class="va">GEN</span>, <span class="va">TOB</span>, <span class="va">TMP</span>, <span class="va">SXT</span><span class="op">)</span> <span class="co"># and select only relevant columns</span>
<span class="fu"><a href="https://rdrr.io/r/utils/head.html" class="external-link">head</a></span><span class="op">(</span><span class="va">resistance_data</span><span class="op">)</span>
<span class="co"># # A tibble: 6 x 10</span>
<span class="co"># # Groups: order [5]</span>
<span class="co"># order genus AMC CXM CTX CAZ GEN TOB TMP SXT</span>
<span class="co"># &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span>
<span class="co"># 1 (unknown order) (unknown gen… NA NA NA NA NA NA NA NA</span>
<span class="co"># 2 Actinomycetales Schaalia NA NA NA NA NA NA NA NA</span>
<span class="co"># 3 Bacteroidales Bacteroides NA NA NA NA NA NA NA NA</span>
<span class="co"># 4 Campylobacteral… Campylobacter NA NA NA NA NA NA NA NA</span>
<span class="co"># 5 Caryophanales Gemella NA NA NA NA NA NA NA NA</span>
<span class="co"># 6 Caryophanales Listeria NA NA NA NA NA NA NA NA</span></code></pre></div>
</div>
<div id="perform-principal-component-analysis" class="section level1">
<h1 class="hasAnchor">
<a href="#perform-principal-component-analysis" class="anchor" aria-hidden="true"></a>Perform principal component analysis</h1>
<p>The new <code><a href="../reference/pca.html">pca()</a></code> function will automatically filter on rows that contain numeric values in all selected variables, so we now only need to do:</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">pca_result</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/pca.html">pca</a></span><span class="op">(</span><span class="va">resistance_data</span><span class="op">)</span>
<span class="co"># Columns selected for PCA: "AMC", "CAZ", "CTX", "CXM", "GEN", "SXT", "TMP"</span>
<span class="co"># and "TOB". Total observations available: 7.</span></code></pre></div>
<p>The result can be reviewed with the good old <code><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary()</a></code> function:</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span>
<span class="co"># Groups (n=4, named as 'order'):</span>
<span class="co"># [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales"</span>
<span class="co"># Importance of components:</span>
<span class="co"># PC1 PC2 PC3 PC4 PC5 PC6 PC7</span>
<span class="co"># Standard deviation 2.1539 1.6807 0.6138 0.33879 0.20808 0.03140 5.121e-17</span>
<span class="co"># Proportion of Variance 0.5799 0.3531 0.0471 0.01435 0.00541 0.00012 0.000e+00</span>
<span class="co"># Cumulative Proportion 0.5799 0.9330 0.9801 0.99446 0.99988 1.00000 1.000e+00</span></code></pre></div>
<pre><code># Groups (n=4, named as 'order'):
# [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales"</code></pre>
<p>Good news. The first two components explain a total of 93.3% of the variance (see the PC1 and PC2 values of the <em>Proportion of Variance</em>. We can create a so-called biplot with the base R <code><a href="https://rdrr.io/r/stats/biplot.html" class="external-link">biplot()</a></code> function, to see which antimicrobial resistance per drug explain the difference per microorganism.</p>
</div>
<div id="plotting-the-results" class="section level1">
<h1 class="hasAnchor">
<a href="#plotting-the-results" class="anchor" aria-hidden="true"></a>Plotting the results</h1>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/stats/biplot.html" class="external-link">biplot</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></code></pre></div>
<p><img src="PCA_files/figure-html/unnamed-chunk-5-1.png" width="750"></p>
<p>But we cant see the explanation of the points. Perhaps this works better with our new <code><a href="../reference/ggplot_pca.html">ggplot_pca()</a></code> function, that automatically adds the right labels and even groups:</p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="../reference/ggplot_pca.html">ggplot_pca</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></code></pre></div>
<p><img src="PCA_files/figure-html/unnamed-chunk-6-1.png" width="750"></p>
<p>You can also print an ellipse per group, and edit the appearance:</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="../reference/ggplot_pca.html">ggplot_pca</a></span><span class="op">(</span><span class="va">pca_result</span>, ellipse <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span> <span class="op">+</span>
<span class="fu">ggplot2</span><span class="fu">::</span><span class="fu"><a href="https://ggplot2.tidyverse.org/reference/labs.html" class="external-link">labs</a></span><span class="op">(</span>title <span class="op">=</span> <span class="st">"An AMR/PCA biplot!"</span><span class="op">)</span></code></pre></div>
<p><img src="PCA_files/figure-html/unnamed-chunk-7-1.png" width="750"></p>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2>
</nav>
</div>
</div>
<footer><div class="copyright">
<p></p>
<p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/" class="external-link external-link">Matthijs S. Berends</a>, <a href="https://www.rug.nl/staff/c.f.luz/" class="external-link external-link">Christian F. Luz</a>, <a href="https://www.rug.nl/staff/a.w.friedrich/" class="external-link external-link">Alexander W. Friedrich</a>, <a href="https://www.rug.nl/staff/b.sinha/" class="external-link external-link">Bhanu N. M. Sinha</a>, <a href="https://www.rug.nl/staff/c.j.albers/" class="external-link external-link">Casper J. Albers</a>, <a href="https://www.rug.nl/staff/c.glasner/" class="external-link external-link">Corinna Glasner</a>.</p>
</div>
<div class="pkgdown">
<p></p>
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link external-link">pkgdown</a> 1.6.1.9001.</p>
</div>
</footer>
</div>
</body>
</html>