AMR/R/bactid.R

395 lines
14 KiB
R
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# AUTHORS #
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# LICENCE #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License version 2.0, #
# as published by the Free Software Foundation. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# ==================================================================== #
#' Transform to bacteria ID
#'
#' Use this function to determine a valid ID based on a genus (and species). This input can be a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples.
#' @param x a character vector or a dataframe with one or two columns
#' @param Becker a logical to indicate whether \emph{Staphylococci} should be categorised into Coagulase Negative \emph{Staphylococci} ("CoNS") and Coagulase Positive \emph{Staphylococci} ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} [1]. This excludes \emph{Staphylococcus aureus} at default, use \code{Becker = "all"} to also categorise \emph{S. aureus} as "CoPS".
#' @param Lancefield a logical to indicate whether beta-haemolytic \emph{Streptococci} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield [2]. These \emph{Streptococci} will be categorised in their first group, i.e. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L. Groups D and E will be ignored, since they are \emph{Enterococci}.
#' @rdname as.bactid
#' @details \code{guess_bactid} is an alias of \code{as.bactid}.
#'
#' Some exceptions have been built in to get more logical results, based on prevalence of human pathogens. These are:
#' \itemize{
#' \item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first}
#' \item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae}}
#' \item{Something like \code{"p aer"} will return the ID of \emph{Pseudomonas aeruginosa} and not \emph{Pasteurella aerogenes}}
#' \item{Something like \code{"stau"} or \code{"staaur"} will return the ID of \emph{Staphylococcus aureus} and not \emph{Staphylococcus auricularis}}
#' }
#' Moreover, this function also supports ID's based on only Gram stain, when the species is not known. \cr
#' For example, \code{"Gram negative rods"} and \code{"GNR"} will both return the ID of a Gram negative rod: \code{GNR}.
#' @source
#' [1] Becker K \emph{et al.} \strong{Coagulase-Negative Staphylococci}. 2014. Clin Microbiol Rev. 27(4): 870926. \cr
#' \url{https://dx.doi.org/10.1128/CMR.00109-13} \cr
#' [2] Lancefield RC \strong{A serological differentiation of human and other groups of hemolytic streptococci}. 1933. J Exp Med. 57(4): 57195. \cr
#' \url{https://dx.doi.org/10.1084/jem.57.4.571}
#' @export
#' @importFrom dplyr %>% filter pull
#' @return Character (vector) with class \code{"bactid"}. Unknown values will return \code{NA}.
#' @seealso \code{\link{microorganisms}} for the dataframe that is being used to determine ID's.
#' @examples
#' # These examples all return "STAAUR", the ID of S. aureus:
#' as.bactid("stau")
#' as.bactid("STAU")
#' as.bactid("staaur")
#' as.bactid("S. aureus")
#' as.bactid("S aureus")
#' as.bactid("Staphylococcus aureus")
#' as.bactid("MRSA") # Methicillin Resistant S. aureus
#' as.bactid("VISA") # Vancomycin Intermediate S. aureus
#' as.bactid("VRSA") # Vancomycin Resistant S. aureus
#'
#' guess_bactid("S. epidermidis") # will remain species: STAEPI
#' guess_bactid("S. epidermidis", Becker = TRUE) # will not remain species: STACNS
#'
#' guess_bactid("S. pyogenes") # will remain species: STCAGA
#' guess_bactid("S. pyogenes", Lancefield = TRUE) # will not remain species: STCGRA
#'
#' \dontrun{
#' df$bactid <- as.bactid(df$microorganism_name)
#'
#' # the select function of tidyverse is also supported:
#' library(dplyr)
#' df$bactid <- df %>%
#' select(microorganism_name) %>%
#' guess_bactid()
#'
#' # and can even contain 2 columns, which is convenient for genus/species combinations:
#' df$bactid <- df %>%
#' select(genus, species) %>%
#' guess_bactid()
#'
#' # same result:
#' df <- df %>%
#' mutate(bactid = guess_bactid(paste(genus, species)))
#' }
as.bactid <- function(x, Becker = FALSE, Lancefield = FALSE) {
failures <- character(0)
if (NCOL(x) == 2) {
# support tidyverse selection like: df %>% select(colA, colB)
# paste these columns together
x_vector <- vector("character", NROW(x))
for (i in 1:NROW(x)) {
x_vector[i] <- paste(pull(x[i,], 1), pull(x[i,], 2), sep = " ")
}
x <- x_vector
} else {
if (NCOL(x) > 2) {
stop('`x` can be 2 columns at most', call. = FALSE)
}
# support tidyverse selection like: df %>% select(colA)
if (!is.vector(x)) {
x <- pull(x, 1)
}
}
x.fullbackup <- x
# remove dots and other non-text in case of "E. coli" except spaces
x <- gsub("[^a-zA-Z0-9 ]+", "", x)
# but spaces before and after should be omitted
x <- trimws(x, which = "both")
x.backup <- x
# replace space by regex sign
x_withspaces <- gsub(" ", ".* ", x, fixed = TRUE)
x <- gsub(" ", ".*", x, fixed = TRUE)
# for species
x_species <- paste(x, 'species')
# add start en stop regex
x <- paste0('^', x, '$')
x_withspaces <- paste0('^', x_withspaces, '$')
for (i in 1:length(x)) {
if (Becker == TRUE | Becker == "all") {
mo <- suppressWarnings(guess_bactid(x.fullbackup[i]))
if (mo %like% '^STA') {
# See Source. It's this figure:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187637/figure/F3/
species <- left_join_microorganisms(mo)$species
if (species %in% c("arlettae", "auricularis", "capitis",
"caprae", "carnosus", "cohnii", "condimene",
"devriesei", "epidermidis", "equorum",
"fleurettii", "gallinarum", "haemolyticus",
"hominis", "jettensis", "kloosii", "lentus",
"lugdunensis", "massiliensis", "microti",
"muscae", "nepalensis", "pasteuri", "perrasii",
"pettenkoleri", "piscifermentans", "rostri",
"saccharott", "saprophyticus", "sciuri",
"siepanovicii", "simulans", "succinus",
"vitulinus", "warneri", "xylosus")) {
x[i] <- "STACNS"
next
} else if ((Becker == "all" & species == "aureus")
| species %in% c("simiae", "agnetis", "chromogenes",
"delphirul", "felis", "futrae",
"hyicus", "intermedius",
"pseudointermedius", "schleiferi")) {
x[i] <- "STACPS"
next
}
}
}
if (Lancefield == TRUE) {
mo <- suppressWarnings(guess_bactid(x.fullbackup[i]))
if (mo %like% '^STC') {
# See Source
species <- left_join_microorganisms(mo)$species
if (species == "pyogenes") {
x[i] <- "STCGRA"
next
}
if (species == "agalactiae") {
x[i] <- "STCGRB"
next
}
if (species %in% c("equisimilis", "equi",
"zooepidemicus", "dysgalactiae")) {
x[i] <- "STCGRC"
next
}
if (species == "anginosus") {
x[i] <- "STCGRF"
next
}
if (species == "sanguis") {
x[i] <- "STCGRH"
next
}
if (species == "salivarius") {
x[i] <- "STCGRK"
next
}
}
}
if (identical(x.backup[i], "")) {
# empty values
x[i] <- NA
failures <- c(failures, x.fullbackup[i])
next
}
if (x.fullbackup[i] %in% AMR::microorganisms$bactid) {
# is already a valid bactid
x[i] <- x.fullbackup[i]
next
}
if (x.backup[i] %in% AMR::microorganisms$bactid) {
# is already a valid bactid
x[i] <- x.backup[i]
next
}
if (tolower(x[i]) == '^e.*coli$') {
# avoid detection of Entamoeba coli in case of E. coli
x[i] <- 'ESCCOL'
next
}
if (tolower(x[i]) == '^h.*influenzae$') {
# avoid detection of Haematobacter influenzae in case of H. influenzae
x[i] <- 'HAEINF'
next
}
if (tolower(x[i]) == '^st.*au$'
| tolower(x[i]) == '^stau$'
| tolower(x[i]) == '^staaur$') {
# avoid detection of Staphylococcus auricularis in case of S. aureus
x[i] <- 'STAAUR'
next
}
if (tolower(x[i]) == '^p.*aer$') {
# avoid detection of Pasteurella aerogenes in case of Pseudomonas aeruginosa
x[i] <- 'PSEAER'
next
}
if (tolower(x[i]) %like% 'coagulase negative'
| tolower(x[i]) %like% 'cns'
| tolower(x[i]) %like% 'cons') {
# coerce S. coagulase negative, also as CNS and CoNS
x[i] <- 'STACNS'
next
}
# translate known trivial names to genus+species
if (!is.na(x.backup[i])) {
if (toupper(x.backup[i]) == 'MRSA'
| toupper(x.backup[i]) == 'VISA'
| toupper(x.backup[i]) == 'VRSA') {
x[i] <- 'STAAUR'
next
}
if (toupper(x.backup[i]) == 'MRSE') {
x[i] <- 'STAEPI'
next
}
if (toupper(x.backup[i]) == 'VRE') {
x[i] <- 'ENC'
next
}
if (toupper(x.backup[i]) == 'MRPA') {
# multi resistant P. aeruginosa
x[i] <- 'PSEAER'
next
}
if (toupper(x.backup[i]) %in% c('PISP', 'PRSP', 'VISP', 'VRSP')) {
# peni R, peni I, vanco I, vanco R: S. pneumoniae
x[i] <- 'STCPNE'
next
}
}
# let's try the ID's first
found <- AMR::microorganisms[which(AMR::microorganisms$bactid == x.backup[i]),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# now try exact match
found <- AMR::microorganisms[which(AMR::microorganisms$fullname == x[i]),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match keeping spaces
found <- AMR::microorganisms[which(AMR::microorganisms$fullname %like% x_withspaces[i]),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match diregarding spaces
found <- AMR::microorganisms[which(AMR::microorganisms$fullname %like% x[i]),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try exact match of only genus, with 'species' attached
# (this prevents Streptococcus from becoming Peptostreptococcus, since "p" < "s")
found <- AMR::microorganisms[which(AMR::microorganisms$fullname == x_species[i]),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match of only genus, with 'species' attached
found <- AMR::microorganisms[which(AMR::microorganisms$fullname %like% x_species[i]),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# search for GLIMS code
found <- AMR::microorganisms.umcg[which(toupper(AMR::microorganisms.umcg$mocode) == toupper(x.backup[i])),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try splitting of characters and then find ID
# like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus
x_split <- x
x_length <- nchar(x.backup[i])
x_split[i] <- paste0(x.backup[i] %>% substr(1, x_length / 2) %>% trimws(),
'.* ',
x.backup[i] %>% substr((x_length / 2) + 1, x_length) %>% trimws())
found <- AMR::microorganisms[which(AMR::microorganisms$fullname %like% paste0('^', x_split[i])),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match with text before and after original search string
# so "negative rods" will be "GNR"
if (x.backup[i] %like% "^Gram") {
x.backup[i] <- gsub("^Gram", "", x.backup[i], ignore.case = TRUE)
# remove leading and trailing spaces again
x.backup[i] <- trimws(x.backup[i], which = "both")
}
if (!is.na(x.backup[i])) {
found <- AMR::microorganisms[which(AMR::microorganisms$fullname %like% x.backup[i]),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
}
# not found
x[i] <- NA_character_
failures <- c(failures, x.fullbackup[i])
}
failures <- failures[!failures %in% c(NA, NULL, NaN)]
if (length(failures) > 0) {
warning("These values could not be coerced to a valid bactid: ",
paste('"', unique(failures), '"', sep = "", collapse = ', '),
".",
call. = FALSE)
}
class(x) <- "bactid"
attr(x, 'package') <- 'AMR'
x
}
#' @rdname as.bactid
#' @export
guess_bactid <- as.bactid
#' @rdname as.bactid
#' @export
is.bactid <- function(x) {
identical(class(x), "bactid")
}
#' @exportMethod print.bactid
#' @export
#' @noRd
print.bactid <- function(x, ...) {
cat("Class 'bactid'\n")
print.default(as.character(x), quote = FALSE)
}
#' @exportMethod as.data.frame.bactid
#' @export
#' @noRd
as.data.frame.bactid <- function (x, ...) {
# same as as.data.frame.character but with removed stringsAsFactors
nm <- paste(deparse(substitute(x), width.cutoff = 500L),
collapse = " ")
if (!"nm" %in% names(list(...))) {
as.data.frame.vector(x, ..., nm = nm)
} else {
as.data.frame.vector(x, ...)
}
}
#' @exportMethod pull.bactid
#' @export
#' @importFrom dplyr pull
#' @noRd
pull.bactid <- function(.data, ...) {
pull(as.data.frame(.data), ...)
}