mirror of https://github.com/msberends/AMR.git
131 lines
4.5 KiB
R
131 lines
4.5 KiB
R
# ==================================================================== #
|
|
# TITLE #
|
|
# AMR: An R Package for Working with Antimicrobial Resistance Data #
|
|
# #
|
|
# SOURCE #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# CITE AS #
|
|
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
|
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
|
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
|
# doi:10.18637/jss.v104.i03 #
|
|
# #
|
|
# Developed at the University of Groningen, the Netherlands, in #
|
|
# collaboration with non-profit organisations Certe Medical #
|
|
# Diagnostics & Advice, and University Medical Center Groningen. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0") & AMR:::pkg_is_available("ggplot2")) {
|
|
pdf(NULL) # prevent Rplots.pdf being created
|
|
|
|
# data should be equal
|
|
expect_equal(
|
|
(example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
ggplot_rsi())$data %>%
|
|
summarise_all(resistance) %>%
|
|
as.double(),
|
|
example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
summarise_all(resistance) %>%
|
|
as.double()
|
|
)
|
|
|
|
expect_stdout(print(example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
ggplot_rsi(x = "interpretation", facet = "antibiotic")))
|
|
expect_stdout(print(example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
ggplot_rsi(x = "antibiotic", facet = "interpretation")))
|
|
|
|
expect_equal(
|
|
(example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
ggplot_rsi(x = "interpretation", facet = "antibiotic"))$data %>%
|
|
summarise_all(resistance) %>%
|
|
as.double(),
|
|
example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
summarise_all(resistance) %>%
|
|
as.double()
|
|
)
|
|
|
|
expect_equal(
|
|
(example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
ggplot_rsi(x = "antibiotic", facet = "interpretation"))$data %>%
|
|
summarise_all(resistance) %>%
|
|
as.double(),
|
|
example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
summarise_all(resistance) %>%
|
|
as.double()
|
|
)
|
|
|
|
expect_equal(
|
|
(example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
ggplot_rsi(x = "antibiotic", facet = "interpretation"))$data %>%
|
|
summarise_all(count_resistant) %>%
|
|
as.double(),
|
|
example_isolates %>%
|
|
select(AMC, CIP) %>%
|
|
summarise_all(count_resistant) %>%
|
|
as.double()
|
|
)
|
|
|
|
# support for scale_type ab and mo
|
|
expect_inherits(
|
|
(data.frame(
|
|
mo = as.mo(c("e. coli", "s aureus")),
|
|
n = c(40, 100)
|
|
) %>%
|
|
ggplot(aes(x = mo, y = n)) +
|
|
geom_col())$data,
|
|
"data.frame"
|
|
)
|
|
expect_inherits(
|
|
(data.frame(
|
|
ab = as.ab(c("amx", "amc")),
|
|
n = c(40, 100)
|
|
) %>%
|
|
ggplot(aes(x = ab, y = n)) +
|
|
geom_col())$data,
|
|
"data.frame"
|
|
)
|
|
|
|
expect_inherits(
|
|
(data.frame(
|
|
ab = as.ab(c("amx", "amc")),
|
|
n = c(40, 100)
|
|
) %>%
|
|
ggplot(aes(x = ab, y = n)) +
|
|
geom_col())$data,
|
|
"data.frame"
|
|
)
|
|
|
|
# support for manual colours
|
|
expect_inherits(
|
|
(ggplot(data.frame(
|
|
x = c("Value1", "Value2", "Value3"),
|
|
y = c(1, 2, 3),
|
|
z = c("Value4", "Value5", "Value6")
|
|
)) +
|
|
geom_col(aes(x = x, y = y, fill = z)) +
|
|
scale_rsi_colours(Value4 = "S", Value5 = "I", Value6 = "R"))$data,
|
|
"data.frame"
|
|
)
|
|
}
|