mirror of
https://github.com/msberends/AMR.git
synced 2024-12-26 19:26:12 +01:00
157 lines
8.0 KiB
R
157 lines
8.0 KiB
R
% Generated by roxygen2: do not edit by hand
|
||
% Please edit documentation in R/mo.R
|
||
\name{as.mo}
|
||
\alias{as.mo}
|
||
\alias{mo}
|
||
\alias{is.mo}
|
||
\alias{guess_mo}
|
||
\title{Transform to microorganism ID}
|
||
\usage{
|
||
as.mo(x, Becker = FALSE, Lancefield = FALSE, allow_uncertain = FALSE,
|
||
reference_df = NULL)
|
||
|
||
is.mo(x)
|
||
|
||
guess_mo(x, Becker = FALSE, Lancefield = FALSE,
|
||
allow_uncertain = FALSE, reference_df = NULL)
|
||
}
|
||
\arguments{
|
||
\item{x}{a character vector or a \code{data.frame} with one or two columns}
|
||
|
||
\item{Becker}{a logical to indicate whether \emph{Staphylococci} should be categorised into Coagulase Negative \emph{Staphylococci} ("CoNS") and Coagulase Positive \emph{Staphylococci} ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} [1].
|
||
|
||
This excludes \emph{Staphylococcus aureus} at default, use \code{Becker = "all"} to also categorise \emph{S. aureus} as "CoPS".}
|
||
|
||
\item{Lancefield}{a logical to indicate whether beta-haemolytic \emph{Streptococci} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield [2]. These \emph{Streptococci} will be categorised in their first group, e.g. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L.
|
||
|
||
This excludes \emph{Enterococci} at default (who are in group D), use \code{Lancefield = "all"} to also categorise all \emph{Enterococci} as group D.}
|
||
|
||
\item{allow_uncertain}{a logical to indicate whether empty results should be checked for only a part of the input string. When results are found, a warning will be given about the uncertainty and the result.}
|
||
|
||
\item{reference_df}{a \code{data.frame} to use for extra reference when translating \code{x} to a valid \code{mo}. The first column can be any microbial name, code or ID (used in your analysis or organisation), the second column must be a valid \code{mo} as found in the \code{\link{microorganisms}} data set.}
|
||
}
|
||
\value{
|
||
Character (vector) with class \code{"mo"}. Unknown values will return \code{NA}.
|
||
}
|
||
\description{
|
||
Use this function to determine a valid microorganism ID (\code{mo}). Determination is done using Artificial Intelligence (AI) and the complete taxonomic kingdoms \emph{Bacteria}, \emph{Fungi} and \emph{Protozoa} (see Source), so the input can be almost anything: a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), an abbreviation known in the field (like \code{"MRSA"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples.
|
||
}
|
||
\details{
|
||
A microbial ID from this package (class: \code{mo}) typically looks like these examples:\cr
|
||
\preformatted{
|
||
Code Full name
|
||
--------------- --------------------------------------
|
||
B_KLBSL Klebsiella
|
||
B_KLBSL_PNE Klebsiella pneumoniae
|
||
B_KLBSL_PNE_RHI Klebsiella pneumoniae rhinoscleromatis
|
||
| | | |
|
||
| | | |
|
||
| | | ----> subspecies, a 3-4 letter acronym
|
||
| | ----> species, a 3-4 letter acronym
|
||
| ----> genus, a 5-7 letter acronym, mostly without vowels
|
||
----> taxonomic kingdom, either B (Bacteria), F (Fungi) or P (Protozoa)
|
||
}
|
||
|
||
Use the \code{\link{mo_property}} functions to get properties based on the returned code, see Examples.
|
||
|
||
This function uses Artificial Intelligence (AI) to help getting fast and logical results. It tries to find matches in this order:
|
||
\itemize{
|
||
\item{Taxonomic kingdom: it first searches in bacteria, then fungi, then protozoa}
|
||
\item{Human pathogenic prevalence: it first searches in more prevalent microorganisms, then less prevalent ones}
|
||
\item{Valid MO codes and full names: it first searches in already valid MO code and genus/species combinations}
|
||
\item{Breakdown of input values: from here it starts to breakdown input values to find possible matches}
|
||
}
|
||
|
||
A couple of effects because of these rules
|
||
\itemize{
|
||
\item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first}
|
||
\item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae} for the same reason}
|
||
\item{Something like \code{"p aer"} will return the ID of \emph{Pseudomonas aeruginosa} and not \emph{Pasteurella aerogenes}}
|
||
\item{Something like \code{"stau"} or \code{"S aur"} will return the ID of \emph{Staphylococcus aureus} and not \emph{Staphylococcus auricularis}}
|
||
}
|
||
This means that looking up human pathogenic microorganisms takes less time than looking up human \strong{non}-pathogenic microorganisms.
|
||
|
||
\code{guess_mo} is an alias of \code{as.mo}.
|
||
}
|
||
\section{ITIS}{
|
||
|
||
\if{html}{\figure{itis_logo.jpg}{options: height=60px style=margin-bottom:5px} \cr}
|
||
This package contains the \strong{complete microbial taxonomic data} (with all seven taxonomic ranks - from subkingdom to subspecies) from the publicly available Integrated Taxonomic Information System (ITIS, \url{https://www.itis.gov}).
|
||
|
||
All (sub)species from the \strong{taxonomic kingdoms Bacteria, Fungi and Protozoa are included in this package}, as well as all previously accepted names known to ITIS. Furthermore, the responsible authors and year of publication are available. This \strong{allows users to use authoritative taxonomic information} for their data analysis on any microorganism, not only human pathogens. It also helps to \strong{quickly determine the Gram stain of bacteria}, since all bacteria are classified into subkingdom Negibacteria or Posibacteria.
|
||
|
||
ITIS is a partnership of U.S., Canadian, and Mexican agencies and taxonomic specialists [3].
|
||
}
|
||
|
||
\section{Source}{
|
||
|
||
[1] Becker K \emph{et al.} \strong{Coagulase-Negative Staphylococci}. 2014. Clin Microbiol Rev. 27(4): 870–926. \url{https://dx.doi.org/10.1128/CMR.00109-13}
|
||
|
||
[2] Lancefield RC \strong{A serological differentiation of human and other groups of hemolytic streptococci}. 1933. J Exp Med. 57(4): 571–95. \url{https://dx.doi.org/10.1084/jem.57.4.571}
|
||
|
||
[3] Integrated Taxonomic Information System (ITIS). Retrieved September 2018. \url{http://www.itis.gov}
|
||
}
|
||
|
||
\examples{
|
||
# These examples all return "B_STPHY_AUR", the ID of S. aureus:
|
||
as.mo("stau")
|
||
as.mo("STAU")
|
||
as.mo("staaur")
|
||
as.mo("S. aureus")
|
||
as.mo("S aureus")
|
||
as.mo("Staphylococcus aureus")
|
||
as.mo("MRSA") # Methicillin Resistant S. aureus
|
||
as.mo("VISA") # Vancomycin Intermediate S. aureus
|
||
as.mo("VRSA") # Vancomycin Resistant S. aureus
|
||
as.mo(369) # Search on TSN (Taxonomic Serial Number), a unique identifier
|
||
# for the Integrated Taxonomic Information System (ITIS)
|
||
|
||
as.mo("Streptococcus group A")
|
||
as.mo("GAS") # Group A Streptococci
|
||
as.mo("GBS") # Group B Streptococci
|
||
|
||
# guess_mo is an alias of as.mo and works the same
|
||
guess_mo("S. epidermidis") # will remain species: B_STPHY_EPI
|
||
guess_mo("S. epidermidis", Becker = TRUE) # will not remain species: B_STPHY_CNS
|
||
|
||
guess_mo("S. pyogenes") # will remain species: B_STRPTC_PYO
|
||
guess_mo("S. pyogenes", Lancefield = TRUE) # will not remain species: B_STRPTC_GRA
|
||
|
||
# Use mo_* functions to get a specific property based on `mo`
|
||
Ecoli <- as.mo("E. coli") # returns `B_ESCHR_COL`
|
||
mo_genus(Ecoli) # returns "Escherichia"
|
||
mo_gramstain(Ecoli) # returns "Gram negative"
|
||
# but it uses as.mo internally too, so you could also just use:
|
||
mo_genus("E. coli") # returns "Escherichia"
|
||
|
||
|
||
\dontrun{
|
||
df$mo <- as.mo(df$microorganism_name)
|
||
|
||
# the select function of tidyverse is also supported:
|
||
library(dplyr)
|
||
df$mo <- df \%>\%
|
||
select(microorganism_name) \%>\%
|
||
guess_mo()
|
||
|
||
# and can even contain 2 columns, which is convenient for genus/species combinations:
|
||
df$mo <- df \%>\%
|
||
select(genus, species) \%>\%
|
||
guess_mo()
|
||
|
||
# same result:
|
||
df <- df \%>\%
|
||
mutate(mo = guess_mo(paste(genus, species)))
|
||
}
|
||
}
|
||
\seealso{
|
||
\code{\link{microorganisms}} for the \code{data.frame} with ITIS content that is being used to determine ID's. \cr
|
||
The \code{\link{mo_property}} functions (like \code{\link{mo_genus}}, \code{\link{mo_gramstain}}) to get properties based on the returned code.
|
||
}
|
||
\keyword{Becker}
|
||
\keyword{Lancefield}
|
||
\keyword{becker}
|
||
\keyword{guess}
|
||
\keyword{lancefield}
|
||
\keyword{mo}
|