mirror of https://github.com/msberends/AMR.git
294 lines
13 KiB
R
Executable File
294 lines
13 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Data Analysis for R #
|
|
# #
|
|
# SOURCE #
|
|
# https://github.com/msberends/AMR #
|
|
# #
|
|
# LICENCE #
|
|
# (c) 2018-2021 Berends MS, Luz CF et al. #
|
|
# Developed at the University of Groningen, the Netherlands, in #
|
|
# collaboration with non-profit organisations Certe Medical #
|
|
# Diagnostics & Advice, and University Medical Center Groningen. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# #
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
|
# ==================================================================== #
|
|
|
|
#' Guess Antibiotic Column
|
|
#'
|
|
#' This tries to find a column name in a data set based on information from the [antibiotics] data set. Also supports WHONET abbreviations.
|
|
#' @inheritSection lifecycle Stable Lifecycle
|
|
#' @param x a [data.frame]
|
|
#' @param search_string a text to search `x` for, will be checked with [as.ab()] if this value is not a column in `x`
|
|
#' @param verbose a [logical] to indicate whether additional info should be printed
|
|
#' @param only_rsi_columns a [logical] to indicate whether only antibiotic columns must be detected that were transformed to class `<rsi>` (see [as.rsi()]) on beforehand (defaults to `FALSE`)
|
|
#' @details You can look for an antibiotic (trade) name or abbreviation and it will search `x` and the [antibiotics] data set for any column containing a name or code of that antibiotic. **Longer columns names take precedence over shorter column names.**
|
|
#' @return A column name of `x`, or `NULL` when no result is found.
|
|
#' @export
|
|
#' @inheritSection AMR Read more on Our Website!
|
|
#' @examples
|
|
#' df <- data.frame(amox = "S",
|
|
#' tetr = "R")
|
|
#'
|
|
#' guess_ab_col(df, "amoxicillin")
|
|
#' # [1] "amox"
|
|
#' guess_ab_col(df, "J01AA07") # ATC code of tetracycline
|
|
#' # [1] "tetr"
|
|
#'
|
|
#' guess_ab_col(df, "J01AA07", verbose = TRUE)
|
|
#' # NOTE: Using column 'tetr' as input for J01AA07 (tetracycline).
|
|
#' # [1] "tetr"
|
|
#'
|
|
#' # WHONET codes
|
|
#' df <- data.frame(AMP_ND10 = "R",
|
|
#' AMC_ED20 = "S")
|
|
#' guess_ab_col(df, "ampicillin")
|
|
#' # [1] "AMP_ND10"
|
|
#' guess_ab_col(df, "J01CR02")
|
|
#' # [1] "AMC_ED20"
|
|
#' guess_ab_col(df, as.ab("augmentin"))
|
|
#' # [1] "AMC_ED20"
|
|
#'
|
|
#' # Longer names take precendence:
|
|
#' df <- data.frame(AMP_ED2 = "S",
|
|
#' AMP_ED20 = "S")
|
|
#' guess_ab_col(df, "ampicillin")
|
|
#' # [1] "AMP_ED20"
|
|
guess_ab_col <- function(x = NULL, search_string = NULL, verbose = FALSE, only_rsi_columns = FALSE) {
|
|
meet_criteria(x, allow_class = "data.frame", allow_NULL = TRUE)
|
|
meet_criteria(search_string, allow_class = "character", has_length = 1, allow_NULL = TRUE)
|
|
meet_criteria(verbose, allow_class = "logical", has_length = 1)
|
|
meet_criteria(only_rsi_columns, allow_class = "logical", has_length = 1)
|
|
|
|
if (is.null(x) & is.null(search_string)) {
|
|
return(as.name("guess_ab_col"))
|
|
} else {
|
|
meet_criteria(search_string, allow_class = "character", has_length = 1, allow_NULL = FALSE)
|
|
}
|
|
|
|
all_found <- get_column_abx(x, info = verbose, only_rsi_columns = only_rsi_columns, verbose = verbose)
|
|
search_string.ab <- suppressWarnings(as.ab(search_string))
|
|
ab_result <- unname(all_found[names(all_found) == search_string.ab])
|
|
|
|
if (length(ab_result) == 0) {
|
|
if (verbose == TRUE) {
|
|
message_("No column found as input for ", search_string,
|
|
" (", ab_name(search_string, language = NULL, tolower = TRUE), ").",
|
|
add_fn = font_black,
|
|
as_note = FALSE)
|
|
}
|
|
return(NULL)
|
|
} else {
|
|
if (verbose == TRUE) {
|
|
message_("Using column '", font_bold(ab_result), "' as input for ", search_string,
|
|
" (", ab_name(search_string, language = NULL, tolower = TRUE), ").")
|
|
}
|
|
return(ab_result)
|
|
}
|
|
}
|
|
|
|
get_column_abx <- function(x,
|
|
...,
|
|
soft_dependencies = NULL,
|
|
hard_dependencies = NULL,
|
|
verbose = FALSE,
|
|
info = TRUE,
|
|
only_rsi_columns = FALSE,
|
|
sort = TRUE,
|
|
reuse_previous_result = TRUE) {
|
|
|
|
# check if retrieved before, then get it from package environment
|
|
if (isTRUE(reuse_previous_result) && identical(unique_call_id(entire_session = FALSE), pkg_env$get_column_abx.call)) {
|
|
# so within the same call, within the same environment, we got here again.
|
|
# but we could've come from another function within the same call, so now only check the columns that changed
|
|
|
|
# first remove the columns that are not existing anymore
|
|
previous <- pkg_env$get_column_abx.out
|
|
current <- previous[previous %in% colnames(x)]
|
|
|
|
# then compare columns in current call with columns in original call
|
|
new_cols <- colnames(x)[!colnames(x) %in% pkg_env$get_column_abx.checked_cols]
|
|
if (length(new_cols) > 0) {
|
|
# these columns did not exist in the last call, so add them
|
|
new_cols_rsi <- get_column_abx(x[, new_cols, drop = FALSE], reuse_previous_result = FALSE, info = FALSE, sort = FALSE)
|
|
current <- c(current, new_cols_rsi)
|
|
# order according to columns in current call
|
|
current <- current[match(colnames(x)[colnames(x) %in% current], current)]
|
|
}
|
|
|
|
# update pkg environment to improve speed on next run
|
|
pkg_env$get_column_abx.out <- current
|
|
pkg_env$get_column_abx.checked_cols <- colnames(x)
|
|
|
|
# and return right values
|
|
return(pkg_env$get_column_abx.out)
|
|
}
|
|
|
|
meet_criteria(x, allow_class = "data.frame")
|
|
meet_criteria(soft_dependencies, allow_class = "character", allow_NULL = TRUE)
|
|
meet_criteria(hard_dependencies, allow_class = "character", allow_NULL = TRUE)
|
|
meet_criteria(verbose, allow_class = "logical", has_length = 1)
|
|
meet_criteria(info, allow_class = "logical", has_length = 1)
|
|
meet_criteria(only_rsi_columns, allow_class = "logical", has_length = 1)
|
|
meet_criteria(sort, allow_class = "logical", has_length = 1)
|
|
|
|
if (info == TRUE) {
|
|
message_("Auto-guessing columns suitable for analysis", appendLF = FALSE, as_note = FALSE)
|
|
}
|
|
|
|
x <- as.data.frame(x, stringsAsFactors = FALSE)
|
|
x.bak <- x
|
|
if (only_rsi_columns == TRUE) {
|
|
x <- x[, which(is.rsi(x)), drop = FALSE]
|
|
}
|
|
|
|
if (NROW(x) > 10000) {
|
|
# only test maximum of 10,000 values per column
|
|
if (info == TRUE) {
|
|
message_(" (using only ", font_bold("the first 10,000 rows"), ")...",
|
|
appendLF = FALSE,
|
|
as_note = FALSE)
|
|
}
|
|
x <- x[1:10000, , drop = FALSE]
|
|
} else if (info == TRUE) {
|
|
message_("...", appendLF = FALSE, as_note = FALSE)
|
|
}
|
|
|
|
# only check columns that are a valid AB code, ATC code, name, abbreviation or synonym,
|
|
# or already have the <rsi> class (as.rsi)
|
|
# and that they have no more than 50% invalid values
|
|
vectr_antibiotics <- unlist(AB_lookup$generalised_all)
|
|
vectr_antibiotics <- vectr_antibiotics[!is.na(vectr_antibiotics) & nchar(vectr_antibiotics) >= 3]
|
|
x_columns <- vapply(FUN.VALUE = character(1),
|
|
colnames(x),
|
|
function(col, df = x) {
|
|
if (generalise_antibiotic_name(col) %in% vectr_antibiotics ||
|
|
is.rsi(x[, col, drop = TRUE]) ||
|
|
is.rsi.eligible(x[, col, drop = TRUE], threshold = 0.5)
|
|
) {
|
|
return(col)
|
|
} else {
|
|
return(NA_character_)
|
|
}
|
|
})
|
|
|
|
x_columns <- x_columns[!is.na(x_columns)]
|
|
x <- x[, x_columns, drop = FALSE] # without drop = FALSE, x will become a vector when x_columns is length 1
|
|
df_trans <- data.frame(colnames = colnames(x),
|
|
abcode = suppressWarnings(as.ab(colnames(x), info = FALSE)),
|
|
stringsAsFactors = FALSE)
|
|
df_trans <- df_trans[!is.na(df_trans$abcode), , drop = FALSE]
|
|
out <- as.character(df_trans$colnames)
|
|
names(out) <- df_trans$abcode
|
|
|
|
# add from self-defined dots (...):
|
|
# such as get_column_abx(example_isolates %>% rename(thisone = AMX), amox = "thisone")
|
|
dots <- list(...)
|
|
if (length(dots) > 0) {
|
|
newnames <- suppressWarnings(as.ab(names(dots), info = FALSE))
|
|
if (any(is.na(newnames))) {
|
|
warning_("Invalid antibiotic reference(s): ", toString(names(dots)[is.na(newnames)]),
|
|
call = FALSE,
|
|
immediate = TRUE)
|
|
}
|
|
# turn all NULLs to NAs
|
|
dots <- unlist(lapply(dots, function(dot) if (is.null(dot)) NA else dot))
|
|
names(dots) <- newnames
|
|
dots <- dots[!is.na(names(dots))]
|
|
# merge, but overwrite automatically determined ones by 'dots'
|
|
out <- c(out[!out %in% dots & !names(out) %in% names(dots)], dots)
|
|
# delete NAs, this will make e.g. eucast_rules(... TMP = NULL) work to prevent TMP from being used
|
|
out <- out[!is.na(out)]
|
|
}
|
|
|
|
if (length(out) == 0) {
|
|
if (info == TRUE) {
|
|
message_("No columns found.")
|
|
}
|
|
pkg_env$get_column_abx.call <- unique_call_id(entire_session = FALSE)
|
|
pkg_env$get_column_abx.checked_cols <- colnames(x.bak)
|
|
pkg_env$get_column_abx.out <- out
|
|
return(out)
|
|
}
|
|
|
|
# sort on name
|
|
if (sort == TRUE) {
|
|
out <- out[order(names(out), out)]
|
|
}
|
|
duplicates <- c(out[duplicated(out)], out[duplicated(names(out))])
|
|
duplicates <- duplicates[unique(names(duplicates))]
|
|
out <- c(out[!names(out) %in% names(duplicates)], duplicates)
|
|
if (sort == TRUE) {
|
|
out <- out[order(names(out), out)]
|
|
}
|
|
|
|
# succeeded with auto-guessing
|
|
if (info == TRUE) {
|
|
message_(" OK.", add_fn = list(font_green, font_bold), as_note = FALSE)
|
|
}
|
|
|
|
for (i in seq_len(length(out))) {
|
|
if (info == TRUE & verbose == TRUE & !names(out[i]) %in% names(duplicates)) {
|
|
message_("Using column '", font_bold(out[i]), "' as input for ", names(out)[i],
|
|
" (", ab_name(names(out)[i], tolower = TRUE, language = NULL), ").")
|
|
}
|
|
if (info == TRUE & names(out[i]) %in% names(duplicates)) {
|
|
warning_(paste0("Using column '", font_bold(out[i]), "' as input for ", names(out)[i],
|
|
" (", ab_name(names(out)[i], tolower = TRUE, language = NULL),
|
|
"), although it was matched for multiple antibiotics or columns."),
|
|
add_fn = font_red,
|
|
call = FALSE,
|
|
immediate = verbose)
|
|
}
|
|
}
|
|
|
|
if (!is.null(hard_dependencies)) {
|
|
hard_dependencies <- unique(hard_dependencies)
|
|
if (!all(hard_dependencies %in% names(out))) {
|
|
# missing a hard dependency will return NA and consequently the data will not be analysed
|
|
missing <- hard_dependencies[!hard_dependencies %in% names(out)]
|
|
generate_warning_abs_missing(missing, any = FALSE)
|
|
return(NA)
|
|
}
|
|
}
|
|
if (!is.null(soft_dependencies)) {
|
|
soft_dependencies <- unique(soft_dependencies)
|
|
if (info == TRUE & !all(soft_dependencies %in% names(out))) {
|
|
# missing a soft dependency may lower the reliability
|
|
missing <- soft_dependencies[!soft_dependencies %in% names(out)]
|
|
missing_msg <- vector_and(paste0(ab_name(missing, tolower = TRUE, language = NULL),
|
|
" (", font_bold(missing, collapse = NULL), ")"),
|
|
quotes = FALSE)
|
|
message_("Reliability would be improved if these antimicrobial results would be available too: ",
|
|
missing_msg)
|
|
}
|
|
}
|
|
|
|
pkg_env$get_column_abx.call <- unique_call_id(entire_session = FALSE)
|
|
pkg_env$get_column_abx.checked_cols <- colnames(x.bak)
|
|
pkg_env$get_column_abx.out <- out
|
|
out
|
|
}
|
|
|
|
generate_warning_abs_missing <- function(missing, any = FALSE) {
|
|
missing <- paste0(missing, " (", ab_name(missing, tolower = TRUE, language = NULL), ")")
|
|
if (any == TRUE) {
|
|
any_txt <- c(" any of", "is")
|
|
} else {
|
|
any_txt <- c("", "are")
|
|
}
|
|
warning_(paste0("Introducing NAs since", any_txt[1], " these antimicrobials ", any_txt[2], " required: ",
|
|
vector_and(missing, quotes = FALSE)),
|
|
immediate = TRUE,
|
|
call = FALSE)
|
|
}
|