mirror of
https://github.com/msberends/AMR.git
synced 2024-12-28 05:26:12 +01:00
262 lines
9.5 KiB
R
Executable File
262 lines
9.5 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Analysis #
|
|
# #
|
|
# SOURCE #
|
|
# https://gitlab.com/msberends/AMR #
|
|
# #
|
|
# LICENCE #
|
|
# (c) 2018-2020 Berends MS, Luz CF et al. #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# #
|
|
# We created this package for both routine data analysis and academic #
|
|
# research and it was publicly released in the hope that it will be #
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
|
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
|
|
# ==================================================================== #
|
|
|
|
#' @importFrom rlang enquos as_label
|
|
dots2vars <- function(...) {
|
|
# this function is to give more informative output about
|
|
# variable names in count_* and proportion_* functions
|
|
paste(
|
|
unlist(
|
|
lapply(enquos(...),
|
|
function(x) {
|
|
l <- as_label(x)
|
|
if (l != ".") {
|
|
l
|
|
} else {
|
|
character(0)
|
|
}
|
|
})
|
|
),
|
|
collapse = ", ")
|
|
}
|
|
|
|
#' @importFrom dplyr %>% pull all_vars any_vars filter_all funs mutate_all
|
|
#' @importFrom cleaner percentage
|
|
rsi_calc <- function(...,
|
|
ab_result,
|
|
minimum = 0,
|
|
as_percent = FALSE,
|
|
only_all_tested = FALSE,
|
|
only_count = FALSE) {
|
|
|
|
data_vars <- dots2vars(...)
|
|
|
|
if (!is.numeric(minimum)) {
|
|
stop("`minimum` must be numeric", call. = FALSE)
|
|
}
|
|
if (!is.logical(as_percent)) {
|
|
stop("`as_percent` must be logical", call. = FALSE)
|
|
}
|
|
if (!is.logical(only_all_tested)) {
|
|
stop("`only_all_tested` must be logical", call. = FALSE)
|
|
}
|
|
|
|
dots_df <- ...elt(1) # it needs this evaluation
|
|
dots <- base::eval(base::substitute(base::alist(...)))
|
|
if ("also_single_tested" %in% names(dots)) {
|
|
stop("`also_single_tested` was replaced by `only_all_tested`. Please read Details in the help page (`?proportion`) as this may have a considerable impact on your analysis.", call. = FALSE)
|
|
}
|
|
ndots <- length(dots)
|
|
|
|
if ("data.frame" %in% class(dots_df)) {
|
|
# data.frame passed with other columns, like: example_isolates %>% proportion_S(amcl, gent)
|
|
dots <- as.character(dots)
|
|
dots <- dots[dots != "."]
|
|
if (length(dots) == 0 | all(dots == "df")) {
|
|
# for complete data.frames, like example_isolates %>% select(amcl, gent) %>% proportion_S()
|
|
# and the old rsi function, that has "df" as name of the first parameter
|
|
x <- dots_df
|
|
} else {
|
|
x <- dots_df[, dots]
|
|
}
|
|
} else if (ndots == 1) {
|
|
# only 1 variable passed (can also be data.frame), like: proportion_S(example_isolates$amcl) and example_isolates$amcl %>% proportion_S()
|
|
x <- dots_df
|
|
} else {
|
|
# multiple variables passed without pipe, like: proportion_S(example_isolates$amcl, example_isolates$gent)
|
|
x <- NULL
|
|
try(x <- as.data.frame(dots), silent = TRUE)
|
|
if (is.null(x)) {
|
|
# support for: with(example_isolates, proportion_S(amcl, gent))
|
|
x <- as.data.frame(rlang::list2(...))
|
|
}
|
|
}
|
|
|
|
if (is.null(x)) {
|
|
warning("argument is NULL (check if columns exist): returning NA", call. = FALSE)
|
|
return(NA)
|
|
}
|
|
|
|
print_warning <- FALSE
|
|
|
|
ab_result <- as.rsi(ab_result)
|
|
|
|
if (is.data.frame(x)) {
|
|
rsi_integrity_check <- character(0)
|
|
for (i in seq_len(ncol(x))) {
|
|
# check integrity of columns: force rsi class
|
|
if (!is.rsi(x %>% pull(i))) {
|
|
rsi_integrity_check <- c(rsi_integrity_check, x %>% pull(i) %>% as.character())
|
|
x[, i] <- suppressWarnings(x %>% pull(i) %>% as.rsi()) # warning will be given later
|
|
print_warning <- TRUE
|
|
}
|
|
}
|
|
if (length(rsi_integrity_check) > 0) {
|
|
# this will give a warning for invalid results, of all input columns (so only 1 warning)
|
|
rsi_integrity_check <- as.rsi(rsi_integrity_check)
|
|
}
|
|
|
|
if (only_all_tested == TRUE) {
|
|
# THE NUMBER OF ISOLATES WHERE *ALL* ABx ARE S/I/R
|
|
x <- apply(X = x %>% mutate_all(as.integer),
|
|
MARGIN = 1,
|
|
FUN = base::min)
|
|
numerator <- sum(as.integer(x) %in% as.integer(ab_result), na.rm = TRUE)
|
|
denominator <- length(x) - sum(is.na(x))
|
|
|
|
} else {
|
|
# THE NUMBER OF ISOLATES WHERE *ANY* ABx IS S/I/R
|
|
other_values <- base::setdiff(c(NA, levels(ab_result)), ab_result)
|
|
other_values_filter <- base::apply(x, 1, function(y) {
|
|
base::all(y %in% other_values) & base::any(is.na(y))
|
|
})
|
|
numerator <- x %>% filter_all(any_vars(. %in% ab_result)) %>% nrow()
|
|
denominator <- x %>% filter(!other_values_filter) %>% nrow()
|
|
}
|
|
} else {
|
|
# x is not a data.frame
|
|
if (!is.rsi(x)) {
|
|
x <- as.rsi(x)
|
|
print_warning <- TRUE
|
|
}
|
|
numerator <- sum(x %in% ab_result, na.rm = TRUE)
|
|
denominator <- sum(x %in% levels(ab_result), na.rm = TRUE)
|
|
}
|
|
|
|
if (print_warning == TRUE) {
|
|
warning("Increase speed by transforming to class `rsi` on beforehand: df %>% mutate_if(is.rsi.eligible, as.rsi)",
|
|
call. = FALSE)
|
|
}
|
|
|
|
if (only_count == TRUE) {
|
|
return(numerator)
|
|
}
|
|
|
|
if (denominator < minimum) {
|
|
if (data_vars != "") {
|
|
data_vars <- paste(" for", data_vars)
|
|
}
|
|
warning("Introducing NA: only ", denominator, " results available", data_vars, " (`minimum` was set to ", minimum, ").", call. = FALSE)
|
|
fraction <- NA
|
|
} else {
|
|
fraction <- numerator / denominator
|
|
}
|
|
|
|
if (as_percent == TRUE) {
|
|
percentage(fraction, digits = 1)
|
|
} else {
|
|
fraction
|
|
}
|
|
}
|
|
|
|
#' @importFrom dplyr %>% summarise_if mutate select everything bind_rows arrange
|
|
#' @importFrom tidyr pivot_longer
|
|
rsi_calc_df <- function(type, # "proportion" or "count"
|
|
data,
|
|
translate_ab = "name",
|
|
language = get_locale(),
|
|
minimum = 30,
|
|
as_percent = FALSE,
|
|
combine_SI = TRUE,
|
|
combine_IR = FALSE,
|
|
combine_SI_missing = FALSE) {
|
|
|
|
check_dataset_integrity()
|
|
|
|
if (!"data.frame" %in% class(data)) {
|
|
stop(paste0("`", type, "_df` must be called on a data.frame"), call. = FALSE)
|
|
}
|
|
|
|
if (isTRUE(combine_IR) & isTRUE(combine_SI_missing)) {
|
|
combine_SI <- FALSE
|
|
}
|
|
if (isTRUE(combine_SI) & isTRUE(combine_IR)) {
|
|
stop("either `combine_SI` or `combine_IR` can be TRUE, not both", call. = FALSE)
|
|
}
|
|
|
|
if (!any(sapply(data, is.rsi), na.rm = TRUE)) {
|
|
stop("No columns with class 'rsi' found. See ?as.rsi.", call. = FALSE)
|
|
}
|
|
|
|
if (as.character(translate_ab) %in% c("TRUE", "official")) {
|
|
translate_ab <- "name"
|
|
}
|
|
|
|
get_summaryfunction <- function(int, type) {
|
|
# look for proportion_S, count_S, etc:
|
|
int_fn <- get(paste0(type, "_", int), envir = asNamespace("AMR"))
|
|
|
|
suppressWarnings(
|
|
if (type == "proportion") {
|
|
summ <- summarise_if(.tbl = data,
|
|
.predicate = is.rsi,
|
|
.funs = int_fn,
|
|
minimum = minimum,
|
|
as_percent = as_percent)
|
|
} else if (type == "count") {
|
|
summ <- summarise_if(.tbl = data,
|
|
.predicate = is.rsi,
|
|
.funs = int_fn)
|
|
}
|
|
)
|
|
summ %>%
|
|
mutate(interpretation = int) %>%
|
|
select(interpretation, everything())
|
|
}
|
|
|
|
resS <- get_summaryfunction("S", type)
|
|
resI <- get_summaryfunction("I", type)
|
|
resR <- get_summaryfunction("R", type)
|
|
resSI <- get_summaryfunction("SI", type)
|
|
resIR <- get_summaryfunction("IR", type)
|
|
data.groups <- group_vars(data)
|
|
|
|
if (isFALSE(combine_SI) & isFALSE(combine_IR)) {
|
|
res <- bind_rows(resS, resI, resR) %>%
|
|
mutate(interpretation = factor(interpretation,
|
|
levels = c("S", "I", "R"),
|
|
ordered = TRUE))
|
|
|
|
} else if (isTRUE(combine_IR)) {
|
|
res <- bind_rows(resS, resIR) %>%
|
|
mutate(interpretation = factor(interpretation,
|
|
levels = c("S", "IR"),
|
|
ordered = TRUE))
|
|
|
|
} else if (isTRUE(combine_SI)) {
|
|
res <- bind_rows(resSI, resR) %>%
|
|
mutate(interpretation = factor(interpretation,
|
|
levels = c("SI", "R"),
|
|
ordered = TRUE))
|
|
}
|
|
|
|
res <- res %>%
|
|
pivot_longer(-c(interpretation, data.groups), names_to = "antibiotic") %>%
|
|
select(antibiotic, everything()) %>%
|
|
arrange(antibiotic, interpretation)
|
|
|
|
if (!translate_ab == FALSE) {
|
|
res <- res %>% mutate(antibiotic = ab_property(antibiotic, property = translate_ab, language = language))
|
|
}
|
|
|
|
as.data.frame(res, stringsAsFactors = FALSE)
|
|
}
|