From b75e5995e0e27572b3b9d41a15378043a9c95781 Mon Sep 17 00:00:00 2001 From: jeremias Date: Wed, 9 Jun 2021 12:54:31 +0200 Subject: [PATCH] add 8ecm --- presentations/press_8ecm/press.tex | 776 +++++++++++++++++++++++++++++ 1 file changed, 776 insertions(+) create mode 100755 presentations/press_8ecm/press.tex diff --git a/presentations/press_8ecm/press.tex b/presentations/press_8ecm/press.tex new file mode 100755 index 0000000..ff508ac --- /dev/null +++ b/presentations/press_8ecm/press.tex @@ -0,0 +1,776 @@ +\documentclass[xcolor=dvipsnames,notheorem,mathserifs]{beamer} +\usepackage{amsmath} +%\documentclass{beamer} +\usepackage[english]{babel} +%\usepackage[latin1]{inputenc} +\usepackage{multicol} % indice en 2 columnas +\usepackage[utf8]{inputenc} + +\usepackage{helvet} +\usefonttheme{serif} +%\usepackage{ccfonts} % Font family: Concrete Math +\usepackage[T1]{fontenc} + +%\usepackage{graphicx} +%\usepackage{movie15} +%\usepackage{media9}[2013/11/04] +\usepackage{xcolor} + + +\usepackage{graphicx} +\usepackage{multimedia} +\usepackage{media9} +\usepackage{listings,xcolor,caption, mathtools, wrapfig} +\usepackage{amsfonts} +\usepackage{amssymb,graphicx,enumerate} +\usepackage{subcaption} +\usepackage{hyperref} + +\usepackage[normalem]{ulem} % for strike out command \sout + + + + + +%\usetheme{default} +%\usetheme{AnnArbor} +%\usetheme{Antibes} +%\usetheme{Bergen} +%\usetheme{Berkeley} +%\usetheme{Berlin} +%\usetheme{Boadilla} +%\usetheme{CambridgeUS} +%\usetheme{Copenhagen} +%\usetheme{Darmstadt} +%\usetheme{Dresden} +%\usetheme{Frankfurt} +%\usetheme{Goettingen} +%\usetheme{Hannover} +%\usetheme{Ilmenau} +%\usetheme{JuanLesPins} +%\usetheme{Luebeck} +%\usetheme{Madrid} +%\usetheme{Malmoe} +%\usetheme{Marburg} +%\usetheme{Montpellier} +%\usetheme{PaloAlto} +%\usetheme{Pittsburgh} +%\usetheme{Rochester} +%\usetheme{Singapore} +%\usetheme{Szeged} +\usetheme{Warsaw} + +%\usecolortheme{albatross} +%\usecolortheme{beaver} +%\usecolortheme{beetle} +\usecolortheme{crane} +%\usecolortheme{dolphin} +%\usecolortheme{dove} +%\usecolortheme{fly} +%\usecolortheme{lily} +%\usecolortheme{orchid} +%\usecolortheme{rose} +%\usecolortheme{seagull} +%\usecolortheme{seahorse} +%\usecolortheme{whale} +%\usecolortheme{wolverine} + +%\useoutertheme{infolines} +%\useoutertheme{miniframes} +%\useoutertheme{sidebar} +\useoutertheme{smoothbars} +%\useoutertheme{shadow} +%\useoutertheme{smoothtree} +%\useoutertheme{split} +%\useoutertheme{tree} + + +\usepackage{amssymb,mathrsfs,amsmath,latexsym,amsthm,amsfonts} +\useinnertheme{rectangles} + + +\setbeamertemplate{navigation symbols}{} % quitar simbolitos + + +\setbeamerfont{page number in head/foot}{size=\large} +%\setbeamertemplate{footline}[frame number] number in footer +\setbeamertemplate{footline}{} + + + +\title[A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI data]{ A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI} +%\author[Jeremías Garay Labra] +%{Jeremías Garay Labra} +\institute[University of Groningen] +{ +Bernoulli Institute\\ +Faculty of Sciences and Engineering\\ +University of Groningen\\[0.5cm] + %\includegraphics[height=1.5cm]{Imagenes/escudoU2014.pdf} + % \includegraphics[height=1cm]{Imagenes/fcfm.png} \\[0.5cm] + Jeremías Garay Labra \emph{join with} Hernan Mella, Julio Sotelo, Sergio Uribe, Cristobal Bertoglio and Joaquin Mura.} +\date{\today} + + +\begin{document} +\frame{\titlepage} + + +% \onslide<1-> + + + + +\begin{frame} + \frametitle{Index} + \tableofcontents +\end{frame} + + +\section[4D flow MRI]{4D flow MRI} +\begin{frame} + \frametitle{4D flow MRI} + \begin{columns}[c] +\column{.5\textwidth} % Left column and width +\footnotesize + +\begin{itemize} +\item<2-> Full 3D coverage of the region of interest +\item<3-> Rich post-proccesing: derived parameters +\end{itemize} + +\onslide<4-> Disadvantages: +\begin{itemize} +\item<5-> Long scan time +\end{itemize} + + + + +\column{.54\textwidth} % Right column and width +\onslide<1-> +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.9\textwidth]{images/4dflow.png} + \caption{\footnotesize 4D flow MRI of a human thorax} + \end{center} + \end{figure} +\end{columns} +\end{frame} + + +\begin{frame} + \frametitle{4D flow MRI} +\footnotesize +\onslide<1-> Strategies: +\begin{itemize} +\item<2-> modest spatial resolutions $ \sim (2.5 \times 2.5 \times 2.5 \ mm^3)$ +\item<3-> partial data coverage +\end{itemize} + + +\begin{columns}[c] +\column{.4\textwidth} % Right column and width +\onslide<4-> +\footnotesize +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.25\textwidth]{images/channel_noise.png} \\ + (a) Noise + %\caption{Noise} + \end{center} + \end{figure} + \column{.4\textwidth} % Right column and width +\onslide<5-> +\footnotesize +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.25\textwidth]{images/channel_aliasing.png}\\ + (b) Aliasing + %\caption{Aliasing} + \end{center} + \end{figure} + \column{.4\textwidth} % Right column and width +\onslide<6-> +\footnotesize +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.25\textwidth]{images/channel_under.png}\\ + (c) Undersampling + %\caption{Aliasing} + \end{center} + \end{figure} +\end{columns} + +\vspace{0.5cm} + +\onslide<7-> Typical quality estimators: SNR, VNR, peak flows/velocities, mass conservation (zero divergence) + +\vspace{0.5cm} + +\onslide<8-> This work $\longrightarrow$ \textbf{conservation of linear momentum} (Navier-Stokes compatibility). + +\end{frame} + + +\section[]{The corrector field} + +\begin{frame} + \frametitle{The corrector field} +\begin{center} +Methodology +\end{center} +\end{frame} + + + +\begin{frame} + \frametitle{The corrector field} +\footnotesize + +\onslide<1-> We assume a perfect physical velocity field $\vec{u}$ +\onslide<2-> \begin{eqnarray*} +\rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \quad \text{in} \quad \Omega \label{eq:NSmom} +\end{eqnarray*} + +\onslide<3-> And a corrector field $\vec{w}$ which satisfies: +\onslide<4-> \begin{align} + \vec{u} & = \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector}\\ +\nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\ +\vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC} +\end{align} + +\onslide<5-> The corrector field $\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations. + +\end{frame} + + +\begin{frame} + \frametitle{The corrector field: Continuum problem} +\footnotesize + +\onslide<1-> Applying the decomposition $\vec{u} = \vec{u}_{meas} + \vec{w}$ into the original equation and writing a variational problem for $\vec w$ we have:\\[0.2cm] +Find $(\vec w(t) ,p(t)) \in H^1_0(\Omega)\times L^2(\Omega)$ such that: +\onslide<2-> \begin{equation*} +\int_{\Omega} \rho \frac{\partial \vec{w}}{\partial t} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas} + \vec w) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w} \notag +\end{equation*} +\begin{equation*} += - \int_{\Omega} \rho \frac{\partial \vec{u}_{meas}}{\partial t} \cdot \vec{v} + \rho \big ( \vec{u}_{meas} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{u}_{meas} : \nabla \vec{v} + q \nabla \cdot \vec{u}_{meas} +\end{equation*} + +\vspace{0.2cm} + +\onslide<3-> or in simple terms: +\onslide<4-> \begin{equation*} +A(\vec w,p;\vec v ,q ) = \mathcal{L} (\vec v) +\end{equation*} + + +for all $(\vec v,q) \in H^1_0(\Omega) \times L^2(\Omega)$. + +\end{frame} + + + +\begin{frame} + \frametitle{The corrector field: Discrete problem} +\footnotesize + +\onslide<1-> In the Discrete, we can write the problem as follows: + +\onslide<2-> \begin{equation} +A_{k}(\vec w,p;\vec v ,q ) + \color{blue}{S^{press}_{k}(\vec w,p;\vec v ,q)} + \color{red}{S^{conv}_{k}(\vec w;\vec v)} \color{black}{ = \mathcal{L}_j (\vec v)} +\label{eq:Corrector_discrete} +\end{equation} + +\begin{itemize} +\small +\item<3-> $ +A_{k}(\vec w,p;\vec v ,q ) := \int_{\Omega} \frac{\rho}{\tau} \vec{w} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas}^k + \vec{w}^{k-1} ) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w} +$ \vspace{0.2cm} +\item<3-> $ \mathcal{L}_j (\vec v) := \int_{\Omega} \frac{\rho}{\tau} \vec{w}^{k-1} \cdot \vec{v} + \mathcal{\ell}_j (\vec v,q) $ + \vspace{0.2cm} +\item<4-> \color{blue}$ +S^{press}_{k}(\vec w,p;\vec v ,q) := \delta \sum_{K \in \Omega}\int_{K} \frac{h_j^2}{\mu} \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{w} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla p \bigg) \cdot \notag \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{v} + \rho \big ( \vec{v} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla q \bigg ) +$ + \vspace{0.2cm} +\item<5-> \color{red}$ +S^{conv}_{k}(\vec w;\vec v) := \int_{\Omega} \frac{\rho}{2} \ \big( \nabla \cdot (\vec u^k_{meas} + \vec w^{k-1}) \big) \ \vec{w} \cdot \vec{v} +$ \vspace{0.2cm} + +\end{itemize} + +\end{frame} + + + + +\begin{frame} + \frametitle{The corrector field: Well-posedness} +\footnotesize +\onslide<1-> +\begin{theorem} +There exists a unique solution of Problem (\ref{eq:Corrector_discrete}) under the condition: $$\rho/\tau + C_\Omega^{-2} \mu/2 - \rho 3 \| \nabla\vec u_{meas}^k\|_\infty > 0$$ for all $k>0$. +\end{theorem} +\onslide<2-> +We can furthermore prove the following energy balance: +\onslide<3-> +\begin{theorem} For $(\vec w^k ,p^k)$ solution of Problem (\ref{eq:Corrector_discrete}), with $\ell_j(\vec v,q)=0$ it holds +\begin{equation*}\label{eq:energy} + \| \vec w^k \|^2_{L_2(\Omega)} \leq \| \vec w^{k-1} \|^2_{L_2(\Omega)} +\end{equation*} +under the condition +\begin{equation*}\label{eq:condstab} +\mu \geq C_\Omega^2 \rho \| \nabla \vec u_{meas}^k\|_\infty +\end{equation*} +\end{theorem} + + +\end{frame} + + + + + + + + + +\section[Synthetic data]{Experiments using synthetic data } + +\begin{frame} + \frametitle{Experiments} +\begin{center} +Experiments using synthetic data +\end{center} +\end{frame} + + + + + + +\begin{frame} + \frametitle{Numerical tests} + +\onslide<1-> +\footnotesize +\begin{columns}[c] +\column{.4\textwidth} % Right column and width +\footnotesize + Simulated channel flow as measurements (Stokes flow) + \column{.5\textwidth} % Right column and width +\footnotesize +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.35\textwidth]{images/cilinder_2.png}\\ + (b) Channel mesh + %\caption{Aliasing} + \end{center} + \end{figure} +\end{columns} + + +\vspace{0.2cm} + +%\onslide<1-> We tested the corrector using CFD simulations as a measurements, in the following testcases: +%\onslide<2-> +%\begin{itemize} +%\item Womersley flow in a cilinder +%\item Navier-Stokes simulations in an aortic mesh +%\end{itemize} +\onslide<2-> Afterwards, perturbations were added: +\begin{itemize} +\item<3-> velocity aliasing (varying the $venc$ parameter) +\item<4-> additive noise (setting SNR in decibels) +\item<5-> simulated k-space undersampling (compressed sensing for the reconstruction) +\end{itemize} +%\onslide<7-> All simulations were done using a stabilized finite element method implemented in FEniCS. Afterwards, all numerical simulations were interpolated into a voxel-type structured mesh +\end{frame} + +% +%\begin{frame} +% \frametitle{Numerical tests: channel} +%\begin{columns}[c] +%\column{.6\textwidth} % Left column and width +%\footnotesize +%\textbf{Channel:} +%\begin{itemize} +%\item Convective term was neglected +%\item Non-slip condition at walls +%\item Oscilatory pressure at $\Gamma_{inlet}$ +%\end{itemize} +%\column{.5\textwidth} % Right column and width +%\footnotesize +%\begin{figure}[!hbtp] +% \begin{center} +% \includegraphics[height=1.0\textwidth]{images/cilinder.png} +% \caption{3D channel mesh} +% \end{center} +% \end{figure} +%\end{columns} +%\end{frame} +% + +\begin{frame} + \frametitle{Numerical tests} +\begin{center} +Results +\end{center} +\end{frame} + + + + +\begin{frame} + \frametitle{Aliasing and noise} +\footnotesize + +\onslide<1-> For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$ + +\onslide<2-> +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.45\textwidth]{images/channel_ppt_1.png} +\caption{\small Fields for the channel: $(SNR,venc) = (\infty,120\%)$. $\vec{w} \times 200$} + \end{center} + \end{figure} + +\end{frame} + +\begin{frame} + \frametitle{Aliasing and noise} +\footnotesize + +For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$ + + +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.45\textwidth]{images/channel_ppt_2.png} + \caption{\small Fields for the channel: $(SNR,venc) = (\infty,80\%)$. $\vec{w} \times 4$ } +%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ } + \end{center} + \end{figure} + +\end{frame} + + +\begin{frame} + \frametitle{Aliasing and noise} +\footnotesize +For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$ + +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.45\textwidth]{images/channel_ppt_3.png} + \caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,120\%)$. $\delta \vec{u}, \vec{w} \times 4$} +%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ } + \end{center} + \end{figure} + +\end{frame} + + +\begin{frame} + \frametitle{Aliasing and noise} +\footnotesize +For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$ + +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.45\textwidth]{images/channel_ppt_4.png} + \caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,80\%)$. $\vec{w} \times 4$} +%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ } + \end{center} + \end{figure} + +\end{frame} + + + +\begin{frame} + \frametitle{Aliasing and noise} +\footnotesize + +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.5\textwidth]{images/channel_curves_SNRinf.png} +\caption{ \footnotesize Evolution of the $L-2$ norms of the components of $\vec w$} + \end{center} + \end{figure} + + +\end{frame} + + +\begin{frame} + \frametitle{Aliasing and noise} +\footnotesize + +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.5\textwidth]{images/channel_curves_SNR10.png} +\caption{ \footnotesize Evolution of the $L-2$ norms of the components of $\vec w$} + \end{center} + \end{figure} + + +\end{frame} + + + + +\begin{frame} + \frametitle{Undersampling} +\footnotesize + +\begin{figure}[!hbtp] + \begin{center} + \includegraphics[height=0.6\textwidth]{images/histo_channel.png} +\caption{ \footnotesize Histograms of different undersampling rates for the channel} + \end{center} + \end{figure} + +\end{frame} + + + + +%\begin{frame} +% \frametitle{Results for channel: undersampling} +%\footnotesize +% +%\begin{figure}[!hbtp] +% \begin{center} +% \includegraphics[height=0.6\textwidth]{images/undersampling_press.png} +%\caption{ \footnotesize Different undersampling rates for the channel} +% \end{center} +% \end{figure} +% +% +%\end{frame} +% + + + +%\begin{frame} +% \frametitle{Numerical tests: aorta} +% +%\begin{columns}[c] +%\column{.6\textwidth} % Left column and width +%\footnotesize +%\textbf{Aorta} +%\begin{itemize} +%\item a mild coartation was added in the descending aorta +%\item $u_{inlet}$ simulates a cardiac cycle +%\item 3-element Windkessel for the outlets +%\item Non-slip condition at walls +%\end{itemize} + +%\column{.5\textwidth} % Right column and width +%\footnotesize +%\begin{figure}[!hbtp] +% \begin{center} +% \includegraphics[height=1.0\textwidth]{images/aorta_blender.png} +%\caption{Aortic mesh} +% \end{center} +% \end{figure} +%\end{columns} +% +% +%\end{frame} +% +% + + +%\begin{frame} +% \frametitle{Results for aorta: aliasing and noise} +%\footnotesize +% +%\begin{figure}[!hbtp] +% \begin{center} +% \includegraphics[height=0.7\textwidth]{images/aorta_perturbation.png} +%\caption{Different perturbation scenarios for the aortic mesh} +% \end{center} +% \end{figure} +% +%\end{frame} +% +% +%\begin{frame} +% \frametitle{Results for aorta: undersampling} +%\footnotesize +% +%\begin{figure}[!hbtp] +% \begin{center} +% \includegraphics[height=0.6\textwidth]{images/histo_blender.png} +%\caption{ \footnotesize Histograms of different undersampling rates for the aortic mesh} +% \end{center} +% \end{figure} +% +%\end{frame} +% +%\begin{frame} +% \frametitle{Results for aorta: undersampling} +%\footnotesize +% +%\begin{figure}[!hbtp] +% \begin{center} +% \includegraphics[height=0.7\textwidth]{images/undersampling_blender.png} +%\caption{ \footnotesize Different undersampling rates for the aortic mesh} +% \end{center} +% \end{figure} +% +%\end{frame} +% +% + + + +\section[4D flow data]{Experiments using real 4D flow data } + + + +\begin{frame} + \frametitle{Experiments} +\begin{center} +Experiments using real 4D flow data +\end{center} +\end{frame} + + + + +\begin{frame} + \frametitle{Experiments} +\footnotesize + +\begin{columns}[c] +\column{.6\textwidth} % Left column and width + +\begin{itemize} +\item<1-> 4D flow measurements were taken from a silicon thoracic aortic phantom made of silicon. +\item<2-> A controled pump (heart rate, peak flow, stroke volume and flow waveform) +\item<3-> A stenosis of $11 \ mm$ of diameter was added in the descending aorta +\item<4-> The phantom was scanned using a clinical $1.5 \ T$ MR scanner (Philips Achieva, Best, The Netherlands) +\end{itemize} + + +\column{.5\textwidth} % Right column and width + +\begin{figure}[!hbtp] + \begin{center} + \footnotesize + \includegraphics[height=\textwidth]{images/phantom.jpg} +\caption{\footnotesize{Experiment done at the Centre of Biomedical Images (CIB) of the Catholic Unversity of Chili (PUC)}} + \end{center} + \end{figure} + +\end{columns} + +%\includemedia[width=0.6\linewidth,height=0.6\linewidth,activate=pageopen, +%passcontext, +%transparent, +%addresource=images/phantom.mp4, +%flashvars={source=images/phantom.mp4} +%]{\includegraphics[width=0.6\linewidth]{images/phantom.jpg}}{VPlayer.swf} +% + +\end{frame} + + + + + + +\begin{frame} + \frametitle{Results} +\footnotesize + +\begin{figure} +\begin{subfigure}{.31\textwidth} + \centering + % \includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/u_15.png} + \caption*{(a) $\vec{u}_{meas}$} +\end{subfigure} +\begin{subfigure}{.01\textwidth} + \hfill +\end{subfigure} +\begin{subfigure}{.31\textwidth} + \centering + %\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/w_15.png} + \caption*{(b) $\vec{w}$} +\end{subfigure} +\begin{subfigure}{.01\textwidth} + \hfill +\end{subfigure} +\begin{subfigure}{.31\textwidth} + \centering + %\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/uc_15.png} + \caption*{(c) $\vec{u}_{meas}+\vec{w}$} +\end{subfigure} +\caption{Measurements, corrector fields and corrected velocities for all the cases.} +\label{fig:phantom_resolution} +\end{figure} + +\end{frame} + + + + + +\section{Conclusions} + +\begin{frame} + \frametitle{Experiments} +\begin{center} +Conclusions +\end{center} +\end{frame} + + +\begin{frame} + \frametitle{Conclusions and future work} +\footnotesize + +\onslide<1-> Potential of the new quality parameter: + +\begin{itemize} +\item<2-> Vector fields has more details +\item<3-> Artifacts recognition +\end{itemize} + + +\onslide<4-> Future: +\begin{itemize} +\item<5-> The use of the field for create new inverse problems which can be used for further accelerations +\end{itemize} + + + +\end{frame} + + + + + +\begin{frame} +\begin{center} +\huge{Thank you for your time!} +\end{center} +\end{frame} + + + + + + + +%\includegraphics<1>[height=4.5cm]{images/pat1.png} +%\includegraphics<2>[height=4.5cm]{images/pat2.png} + + + +\end{document} +