diff --git a/presentation/pres03.tex b/presentation/pres03.tex index 16d2cc1..c9d1314 100755 --- a/presentation/pres03.tex +++ b/presentation/pres03.tex @@ -102,7 +102,7 @@ University of Groningen\\[0.5cm] \frame{\titlepage} - +% \onslide<1-> @@ -131,50 +131,65 @@ University of Groningen\\[0.5cm] \begin{frame} \frametitle{4D flow MRI} \footnotesize - -Main limitation for its clinical applicability is the long scan times involved. Therefore, multiple strategies emerged in order to make acquisition faster> +Main limitation for its clinical applicability is the long scan times involved. Therefore, multiple strategies emerged in order to make acquisition faster, such as: \begin{itemize} \item Navigator gating -\item modest spatial resolutions $2.5 \times 2.5 \times 2.5 \ mm3$ +\item modest spatial resolutions $ \sim (2.5 \times 2.5 \times 2.5 \ mm^3)$ \item partial data coverage \end{itemize} -Typical quality estimators are> SNR, VNR, peak flows/velocities, mass conservation (zero divergence +Typical quality estimators: SNR, VNR, peak flows/velocities, mass conservation (zero divergence) -We want to introduce a novel measure for quantify the quality of the 4D flow measurements, using the conservation of momentum of the flow. +We want to introduce a novel measure for quantify the quality of the 4D flow measurements, using the conservation of momentum of the flow (Navier-Stokes compatibility). \end{frame} \section{The corrector field} - \begin{frame} \frametitle{The corrector field} -\begin{columns}[c] -\column{.6\textwidth} % Left column and width \footnotesize -\onslide<1-> We assume a perfect velocity \begin{eqnarray*} +We assume a perfect physical velocity field $\vec{u}$ +\begin{eqnarray*} \rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \quad \text{in} \quad \Omega \label{eq:NSmom} \end{eqnarray*} -\onslide<2-> And a corrector field which +And a corrector field $\vec{w}$ which satisfies: + \begin{align} \vec{u} & \approx \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector} \\ \nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\ \vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC} \end{align} -\onslide<3-> asd + + $\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations. + +\end{frame} + + +\begin{frame} + \frametitle{Numerical tests} +\begin{columns}[c] +\column{.6\textwidth} % Left column and width +\footnotesize +We tested the corrector using CFD simulations as a measurements, in the following testcases: \begin{itemize} -\footnotesize -\item[]<4-> $u = u_{in} \quad \text{in} \quad \Gamma_{inlet}$ +\item Womersley flow in a cilinder +\item Navier-Stokes simulations in an aortic mesh +\end{itemize} +Also perturbations were added into the measurements: +\begin{itemize} +\item velocity aliasing +\item additive noise +\item simulated k-space undersampling \end{itemize} \column{.5\textwidth} % Right column and width +\footnotesize \begin{figure}[!hbtp] -\onslide<1-> \begin{center} \includegraphics[height=\textwidth]{images/aorta_blender.png} \caption{Aortic mesh } @@ -184,30 +199,17 @@ We want to introduce a novel measure for quantify the quality of the 4D flow mea \end{frame} - - \begin{frame} - \frametitle{The corrector field} + \frametitle{Experiments} \footnotesize - -To study the corrector in several scenarios> synthetic data, experimental phantom and healthy volunteers. +\begin{itemize} +\item We performed 4D flow measurements in a silicon aortic phantom +\item 4 healthy volunteers were scanned using a clinical standard 4D flow protocol. +\end{itemize} \end{frame} -\begin{frame} - \frametitle{The corrector field} -\footnotesize - -different data treatments> aliasing and noise. Undersampling - - -\end{frame} - - - - - \section{Results} @@ -215,7 +217,7 @@ different data treatments> aliasing and noise. Undersampling \frametitle{Results} \footnotesize -results for the synthetic data. Comparison againts a perfect correction case with du. +results for the synthetic data. Comparison againts the perfect correction field: du. \end{frame} @@ -243,10 +245,15 @@ results in healthy volunteers \begin{frame} - \frametitle{Results} + \frametitle{Conclusions and future} \footnotesize -potential of the new quality parameter> analize real data. use the specificity for label zones with strong disagreedment. Use the field for create new inverse problems which can be used for further accelerations +potential of the new quality parameter: +\begin{itemize} +\item analize real data +\item use the specificity for label zones with strong disagreedment +\item Use the field for create new inverse problems which can be used for further accelerations +\end{itemize} \end{frame}