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Stationary Case: Least square estimation

Find the optimal state imposing: %(Xﬂ =0:

—H'WZ+H'W'HX —(P)" X"+ (P )X =0

or reordering terms:

Xt =X +K(Z-HX")

With K = PYTH'W~! the Kalman matrix and P* = ((P7)~ ! + HTW—'H)~ !,
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by linearity of A,, the covariance of Xn_ is equal to A,,P;r IA,{
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Non-linear problems

1. Extended Kalman Filter (EKF)
a. Taylor’s expansion on the non-linear operator (tangent operators)
b. High cost if the Jacobian can be found numerically
c. Not optimal when the system is highly non-linear

2. Unscented Kalman Filter (UKF)

a. Approximate propagation of vectors by propagating suitable particles
b. Could be shown that by computing mean and covariance of the particles, a
better approx could be reached.

3. Reduced Order Unscented Kalman Filter (ROUKF)

a. LU factorization could be performed on the covariance matrix P,
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Graphical Picture: Updating Measurements
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Graphical Picture: Correction

Measurement

True Solution
Estimate

Model
Estimate

Advancing two things: Mean and covariance

Garay



Application: Parameter recovery

Garay



Application: Parameter recovery

Consider a Poiseuille flow in a cylinder coming from a simulation. Assume
we have:

13/22



Application: Parameter recovery

Consider a Poiseuille flow in a cylinder coming from a simulation. Assume
we have:

u (cm/s)
0 10 20 30

—




Application: Parameter recovery

Consider a Poiseuille flow in a cylinder coming from a simulation. Assume
we have:

1. The velocity
measurements with the
addition of some noise

u (cm/s)
0 10 20 30

—




Application: Parameter recovery

Consider a Poiseuille flow in a cylinder coming from a simulation. Assume
we have:

1. The velocity
measurements with the
addition of some noise

2. The measurement’s mesh

u (cm/s)
0 10 20 30

14/22



Application: Parameter recovery

Consider a Poiseuille flow in a cylinder coming from a simulation. Assume
we have:

1. The velocity
measurements with the
addition of some noise

2. The measurement’s mesh

‘We want to estimate the
amplitude of the inlet flow

u (cm/s)
0 10 20 30

14/22



Application: Parameter recovery

Consider a Poiseuille flow in a cylinder coming from a simulation. Assume
we have:

1. The velocity
measurements with the
addition of some noise

2. The measurement’s mesh

‘We want to estimate the
amplitude of the inlet flow

Uinler = U (R2 - r2) sin(mt/T) o 1073 30
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Application: More complex scenario
Aortic velocity data with reduced order boundary condition:

1. Navier-Stokes simulation with a
plug-flow at the intlet:

Usin(rt/T) ifr<T*
Uinlet = . Nt %
aUsin(mt/T )e™" ift>T

2. A 1-element Windkessel boundary
condition is defined in every inlet.

We want to recover the proximal
resistances R;, i = 1,2, 3,4 and the
amplitude U from noisy velocity
measurements.
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Application: Parameter recovery

true recovered

Ry (dyn-s-cm™) 250 242.14
Ry (dyn-s-cm™>) 250 249.16
Ry (dyn-s-cm™>) 250 246.03
Ry (dyn-s-ecm™3) 10 9.87
U (cm/s) 30 29.94
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Application: Parameter recovery

true recovered recovered with reduced vel

Ry (dyn-s-cm™) 250 242.14 247.31
Ry (dyn-s-em™5) 250  249.16 255.56
Ry (dyn-s-cm™5) 250  246.03 277.37
Ry (dyn-s-cm™3) 10 9.87 8.03

U (cm/s) 30 29.94 29.80
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Summary

o Kalman’s filter uses a series of measurements and produce an estimate in
two steps: Prediction and Correction

@ The Reduced Order Kalman Filter (ROUKEF) its a simplification for
non-linear problems which generally run faster than others methods. (no
derivatives are need it)

@ Parameter recovery its a straightforward application.
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