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Stationary Case: Least square estimation

Assume we want to find an estimator X̂ of a unknown vector X, with a certain
guess available X̂−, associated with a confidence matrix (P−)−1. Assume
also that we have partial observation Z, satisfying Z = HX + ζZ , associated
with a confidence matrix W−1.

A quantity taking care of X̂− and Z can be obtained minimizing the cuadratic
cost functional:

J(X̂) =
1
2
(X̂ − X̂−)(P−)−1(X̂ − X̂−) +

1
2
(Z − HX̂)W−1(Z − HX̂) (1)
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Stationary Case: Least square estimation

Find the optimal state imposing: dJ
dX̂
(X̂+) = 0:

−HTW−1Z + HTW−1HX̂ − (P−)−1X̂− + (P−)−1X̂ ≡ 0

or reordering terms:

X̂+ = X̂− + K(Z − HX̂−)

With K = P+HTW−1 the Kalman matrix and P+ = ((P−)−1 + HTW−1H)−1.
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Time dependent problems

The method could be easily expanded into time-dependent systems
(Ẋ = AX + F):

1. Assume that X̂+
n−1 is known with a covariance P+

n−1

Prediction

X̂−n = AnX̂+
n−1 + Fn

by linearity of An, the covariance of X̂−n is equal to AnP+
n−1AT

n

2. Afterwards

Correction

X̂+
n = X̂−n + Kn(Zn − HnX̂−n )
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Non-linear problems

1. Extended Kalman Filter (EKF)

a. Taylor’s expansion on the non-linear operator (tangent operators)
b. High cost if the Jacobian can be found numerically
c. Not optimal when the system is highly non-linear

2. Unscented Kalman Filter (UKF)

a. Approximate propagation of vectors by propagating suitable particles
b. Could be shown that by computing mean and covariance of the particles, a

better approx could be reached.

3. Reduced Order Unscented Kalman Filter (ROUKF)

a. LU factorization could be performed on the covariance matrix P−
n
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Graphical Picture: Initial State
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Graphical Picture: Initial State
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Graphical Picture: Prediction

Garay 9 / 22



Graphical Picture: Updating Measurements
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Graphical Picture: Correction
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Application: Parameter recovery
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Application: Parameter recovery
Consider a Poiseuille flow in a cylinder coming from a simulation. Assume
we have:
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Application: Parameter recovery
Consider a Poiseuille flow in a cylinder coming from a simulation. Assume
we have:

1. The velocity
measurements with the
addition of some noise

2. The measurement’s mesh

We want to estimate the
amplitude of the inlet flow

uinlet = U (R2 − r2) sin(πt/T)
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Application: Parameter recovery

Reparametrized value: θ0 · 2θ
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Application: More complex scenario

Aortic velocity data with reduced order boundary condition:

1. Navier-Stokes simulation with a
plug-flow at the intlet:

uinlet =

{
Usin(πt/T) if t < T∗

αUsin(πt/T ′)e−γt if t ≥ T∗

2. A 1-element Windkessel boundary
condition is defined in every inlet.

We want to recover the proximal
resistances Ri, i = 1, 2, 3, 4 and the
amplitude U from noisy velocity
measurements.
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Application: Parameter recovery θ0 2θ
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Application: Parameter recovery

true recovered

R1 (dyn · s · cm−5) 250 242.14
R2 (dyn · s · cm−5) 250 249.16
R3 (dyn · s · cm−5) 250 246.03
R4 (dyn · s · cm−5) 10 9.87
U (cm/s) 30 29.94
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Application: Parameter recovery (only using 1 vel. component)
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Application: Parameter recovery (only using 1 vel. component)
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Application: Parameter recovery

true recovered recovered with reduced vel

R1 (dyn · s · cm−5) 250 242.14 247.31
R2 (dyn · s · cm−5) 250 249.16 255.56
R3 (dyn · s · cm−5) 250 246.03 277.37
R4 (dyn · s · cm−5) 10 9.87 8.03
U (cm/s) 30 29.94 29.80
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Summary
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Summary

Kalman’s filter uses a series of measurements and produce an estimate in
two steps: Prediction and Correction

The Reduced Order Kalman Filter (ROUKF) its a simplification for
non-linear problems which generally run faster than others methods. (no
derivatives are need it)

Parameter recovery its a straightforward application.
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