\documentclass{beamer} \usetheme{Boadilla} \usefonttheme[onlylarge]{serif} \usebeamercolor{dolphin} \setbeamerfont*{frametitle}{size=\normalsize,series=\bfseries} \setbeamertemplate{navigation symbols}{} % Standard packages \usepackage[english]{babel} \usepackage[latin1]{inputenc} \usepackage{times} \usepackage[T1]{fontenc} % Setup TikZ \usepackage{tikz} \usetikzlibrary{arrows} \tikzstyle{block}=[draw opacity=0.7,line width=1.4cm] % Author, Title, etc. \title[] {% Data assimilation on the Kalman filter } \author[Garay] { Jeremias Garay %\inst{1} %\textcolor{green!50!black}{Till~Tantau}\inst{5} } %\institute[University of Groningen] %{ % \inst{1}% % University of Groningen, The Netherlands % \and % \vskip-2mm %} \date % The main document \begin{document} \begin{frame} \titlepage \end{frame} %\begin{frame}{Outline} % \tableofcontents %\end{frame} \section{Introduction} \begin{frame} \begin{center} \large{Introduction} \end{center} \end{frame} \begin{frame}{Stationary Case: Least square estimation} \onslide<1-> \textit{Assume we want to find an estimator $\hat{X}$ of a unknown vector $X$, with a certain guess available $\hat{X}^-$, associated with a confidence matrix $(P^-)^{-1}$. Assume also that we have partial observation $Z$, satisfying $Z = HX + \zeta^Z$, associated with a confidence matrix $W^{-1}$.} \\[0.5cm] \onslide<2-> A quantity taking care of $\hat{X}^{-}$ and $Z$ can be obtained minimizing the cuadratic cost functional: \onslide<3-> \begin{equation} J(\hat{X}) = \frac{1}{2} (\hat{X} - \hat{X}^-) (P^-)^{-1} (\hat{X} - \hat{X}^-) + \frac{1}{2} (Z -H\hat{X}) W^{-1} (Z - H\hat{X}) \end{equation} \end{frame} \begin{frame}{Stationary Case: Least square estimation} \onslide<1-> Find the optimal state imposing: $\frac{dJ}{d\hat{X}}(\hat{X}^+) = 0$: \onslide<2-> \begin{eqnarray*} -H^T W^{-1} Z + H^T W^{-1} H \hat{X} - (P^-)^{-1} \hat{X}^- + (P^-)^{-1} \hat{X} \equiv 0 \end{eqnarray*} \onslide<3-> or reordering terms: \onslide<4-> \begin{equation*} \hat{X}^+ = \hat{X}^- + K (Z-H\hat{X}^-) \end{equation*} \vspace{0.4cm} With $K = P^+ H^T W^{-1}$ the Kalman matrix and $P^+ = ((P^-)^{-1} + H^T W^{-1} H)^{-1}$. \end{frame} \begin{frame}{Time dependent problems} \onslide<1-> The method could be easily expanded into time-dependent systems ($\dot{X} = AX + F$): \begin{itemize} \item[1.]<2-> Assume that $\hat{X}^{+}_{n-1}$ is known with a covariance $P^+_{n-1}$ \begin{exampleblock}{Prediction} $$\hat{X}^{-}_n = A_n \hat{X}^{+}_{n-1} + F_n$$ by linearity of $A_n$, the covariance of $\hat{X}^-_n$ is equal to $A_n P_{n-1}^+ A_n^T$ \end{exampleblock} \item[2. ]<3-> Afterwards \begin{exampleblock}{Correction} $$\hat{X}^{+}_n = \hat{X}^{-}_n + K_n (Z_n - H_n \hat{X}_n^-) $$ \end{exampleblock} \end{itemize} \end{frame} \begin{frame}{Non-linear problems} \begin{itemize} \item[1.]<1-> \emph{Extended Kalman Filter (EKF)} \begin{itemize} \item[a.]<2-> Taylor's expansion on the non-linear operator (tangent operators) \item[b.]<3-> High cost if the Jacobian can be found numerically \item[c.]<4-> Not optimal when the system is highly non-linear \end{itemize} \item[2.]<5-> \emph{Unscented Kalman Filter (UKF)} \begin{itemize} \item[a.]<6-> Approximate propagation of vectors by propagating suitable particles \item[b.]<7-> Could be shown that by computing mean and covariance of the particles, a better approx could be reached. \end{itemize} \item[3.]<8-> \emph{Reduced Order Unscented Kalman Filter (ROUKF)} \begin{itemize} \item[a.]<9-> LU factorization could be performed on the covariance matrix $P_n^-$ \end{itemize} \end{itemize} \end{frame} \begin{frame}{Graphical Picture: Initial State} \begin{figure} \includegraphics[width=\textwidth]{pictures/kalman1.png} \end{figure} \end{frame} \begin{frame}{Graphical Picture: Initial State} \begin{figure} \includegraphics[width=\textwidth]{pictures/kalman2.png} \end{figure} \end{frame} \begin{frame}{Graphical Picture: Prediction} \begin{figure} \includegraphics[width=\textwidth]{pictures/kalman3.png} \end{figure} \end{frame} \begin{frame}{Graphical Picture: Updating Measurements} \begin{figure} \includegraphics[width=\textwidth]{pictures/kalman4.png} \end{figure} \end{frame} \begin{frame}{Graphical Picture: Correction} \begin{figure} \includegraphics[width=\textwidth]{pictures/kalman5.png} \end{figure} \end{frame} \section{Application: Parameter recovery} \begin{frame} \begin{center} \large{Application: Parameter recovery} \end{center} \end{frame} \begin{frame}{Application: Parameter recovery} \onslide<1-> Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have: \begin{columns}[t] \column{.4\textwidth} \vspace{0.3cm} \column{.4\textwidth} \onslide<2-> \begin{figure} \includegraphics[width=1.3\textwidth]{pictures/u_ref.png} \vspace{1.5cm} \end{figure} \end{columns} \end{frame} \begin{frame}{Application: Parameter recovery} Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have: \begin{columns}[t] \column{.4\textwidth} \begin{itemize} \item[1.]The velocity measurements with the addition of some noise \item[2.]<2-> The measurement's mesh \end{itemize} \vspace{0.3cm} \onslide<3-> We want to estimate the amplitude of the inlet flow \onslide<4-> $$ u_{inlet} = \alert{U} \ (R^2-r^2) \ sin(\pi t / T) $$ \column{.4\textwidth} \onslide<1-> \begin{figure} \includegraphics[width=1.3\textwidth]{pictures/u_noi.png} \vspace{1.5cm} \end{figure} \end{columns} \end{frame} \begin{frame}{Application: Parameter recovery} \begin{figure} \includegraphics[width=0.8\textwidth]{pictures/channel_inlet.png} \end{figure} \begin{itemize} \item[] Reparametrized value: $\theta_0 \cdot 2^\theta$ \end{itemize} \end{frame} \begin{frame}{Application: More complex scenario} \onslide<1-> Aortic velocity data with reduced order boundary condition: \begin{columns}[t] \column{.55\textwidth} \begin{itemize} \item[1.]<2-> Navier-Stokes simulation with a \emph{plug-flow} at the intlet: \[ u_{inlet} = \begin{cases} U sin(\pi t/T) & \text{if} \ t A 1-element Windkessel boundary condition is defined in every inlet. \end{itemize} \vspace{0.3cm} \onslide<4-> We want to recover the proximal resistances $R_i$, $i=1,2,3,4$ and the amplitude $U$ from noisy velocity measurements. \column{.4\textwidth} \onslide<1-> \begin{figure} \includegraphics[width=1.0\textwidth]{pictures/windk_model.png} \end{figure} \end{columns} \end{frame} \begin{frame}{Application: Parameter recovery $\theta_0 \ 2^\theta$} \begin{figure} \includegraphics[width=0.9\textwidth]{pictures/windk_res.png} \end{figure} \end{frame} \begin{frame}{Application: Parameter recovery} \begin{tabular}{ l c r } & \emph{true} & \emph{recovered} \\[0.1cm] \hline $R_1 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $242.14$ \\ $R_2 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $249.16$ \\ $R_3 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $246.03$ \\ $R_4 \ (dyn\cdot s \cdot cm^{-5})$ & $10$ & $9.87$ \\ $U \ (cm/s)$ & $30$ & $29.94$ \\ \end{tabular} \end{frame} \begin{frame}{Application: Parameter recovery (\alert{only using 1 vel. component})} \onslide<2-> \begin{figure} \includegraphics[width=0.9\textwidth]{pictures/windk_res2.png} \end{figure} \end{frame} \begin{frame}{Application: Parameter recovery} \begin{tabular}{ l c c c } & \emph{true} & \emph{recovered} & \emph{recovered with reduced vel}\\[0.1cm] \hline $R_1 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $242.14$ & $247.31$ \\ $R_2 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $249.16$ & $255.56$ \\ $R_3 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $246.03$ & $277.37$ \\ $R_4 \ (dyn\cdot s \cdot cm^{-5})$ & $10$ & $9.87$ & $8.03$ \\ $U \ (cm/s)$ & $30$ & $29.94$ & $29.80$ \\ \end{tabular} \end{frame} \section{Summary} \begin{frame} \begin{center} \large{Summary} \end{center} \end{frame} \begin{frame} \frametitle{Summary} \begin{itemize} \item<1-> Kalman's filter uses a series of measurements and produce an estimate in two steps: Prediction and Correction \item<2-> The Reduced Order Kalman Filter (ROUKF) its a simplification for non-linear problems which generally run faster than others methods. (no derivatives are need it) \item<3-> Parameter recovery its a straightforward application. \end{itemize} \end{frame} \end{document}