\documentclass[xcolor=dvipsnames,notheorem,mathserifs]{beamer} \usepackage{amsmath} %\documentclass{beamer} \usepackage[english]{babel} %\usepackage[latin1]{inputenc} \usepackage{multicol} % indice en 2 columnas \usepackage[utf8]{inputenc} \usepackage{helvet} \usefonttheme{serif} %\usepackage{ccfonts} % Font family: Concrete Math \usepackage[T1]{fontenc} %\usepackage{graphicx} %\usepackage{movie15} %\usepackage{media9}[2013/11/04] \usepackage{xcolor} \usepackage{graphicx} \usepackage{multimedia} \usepackage{media9} \usepackage{listings,xcolor,caption, mathtools, wrapfig} \usepackage{amsfonts} \usepackage{amssymb,graphicx,enumerate} \usepackage{subcaption} \usepackage{hyperref} \usepackage[normalem]{ulem} % for strike out command \sout %\usetheme{default} %\usetheme{AnnArbor} %\usetheme{Antibes} %\usetheme{Bergen} %\usetheme{Berkeley} %\usetheme{Berlin} %\usetheme{Boadilla} %\usetheme{CambridgeUS} %\usetheme{Copenhagen} %\usetheme{Darmstadt} %\usetheme{Dresden} %\usetheme{Frankfurt} %\usetheme{Goettingen} %\usetheme{Hannover} %\usetheme{Ilmenau} %\usetheme{JuanLesPins} %\usetheme{Luebeck} %\usetheme{Madrid} %\usetheme{Malmoe} %\usetheme{Marburg} %\usetheme{Montpellier} %\usetheme{PaloAlto} %\usetheme{Pittsburgh} %\usetheme{Rochester} %\usetheme{Singapore} %\usetheme{Szeged} \usetheme{Warsaw} %\usecolortheme{albatross} %\usecolortheme{beaver} %\usecolortheme{beetle} \usecolortheme{crane} %\usecolortheme{dolphin} %\usecolortheme{dove} %\usecolortheme{fly} %\usecolortheme{lily} %\usecolortheme{orchid} %\usecolortheme{rose} %\usecolortheme{seagull} %\usecolortheme{seahorse} %\usecolortheme{whale} %\usecolortheme{wolverine} %\useoutertheme{infolines} %\useoutertheme{miniframes} %\useoutertheme{sidebar} \useoutertheme{smoothbars} %\useoutertheme{shadow} %\useoutertheme{smoothtree} %\useoutertheme{split} %\useoutertheme{tree} \usepackage{amssymb,mathrsfs,amsmath,latexsym,amsthm,amsfonts} \useinnertheme{rectangles} \setbeamertemplate{navigation symbols}{} % quitar simbolitos \setbeamerfont{page number in head/foot}{size=\large} %\setbeamertemplate{footline}[frame number] number in footer \setbeamertemplate{footline}{} \title{Robust parameter estimation in fluid flow models from aliased velocity measurements} %\author[Jeremías Garay Labra] %{Jeremías Garay Labra} \institute[University of Groningen] { Bernoulli Institute\\ Faculty of Sciences and Engineering\\ University of Groningen\\[0.5cm] %\includegraphics[height=1.5cm]{Imagenes/escudoU2014.pdf} % \includegraphics[height=1cm]{Imagenes/fcfm.png} \\[0.5cm] Jeremías Garay Labra \emph{join with} Cristobal Bertoglio.} \date{\today} \begin{document} \frame{\titlepage} % \onslide<1-> \begin{frame} \frametitle{Index} \tableofcontents \end{frame} \section[4D flow MRI]{4D flow MRI} \begin{frame} \frametitle{4D flow MRI} \begin{columns}[c] \column{.5\textwidth} % Left column and width \footnotesize \begin{itemize} \item<2-> Velocities encoded into the magnetization phase \item<3-> Rich post-proccesing: derived parameters \end{itemize} \column{.54\textwidth} % Right column and width \onslide<1-> \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.9\textwidth]{images/4dflow.png} \caption{\footnotesize 4D flow MRI of a human thorax} \end{center} \end{figure} \end{columns} \end{frame} \section{The mathematical model} \begin{frame} \frametitle{The mathematical model} \begin{center} The mathematical model \end{center} \end{frame} \begin{frame} \frametitle{The mathematical model} \begin{columns}[c] \column{.5\textwidth} % Left column and width \footnotesize \column{.54\textwidth} % Right column and width \begin{figure}[!hbtp] \begin{center} \includegraphics[height=1.1\textwidth]{images/full_aorta.png} \end{center} \end{figure} \end{columns} \end{frame} \begin{frame} \frametitle{The mathematical model} \begin{columns}[c] \column{.5\textwidth} % Left column and width \footnotesize \begin{itemize} \item<2-> Incompressible Navier-Stokes equations: \begin{equation} \begin{cases} \displaystyle \rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \\[0.2cm] \nabla \cdot \vec{u} = 0 \quad \text{in} \quad \Omega \\[0.2cm] \vec{u} = \vec{u}_{inlet} \quad \text{on} \quad \Gamma_{in} \\[0.2cm] \vec{u} = 0 \quad \text{on} \quad \Gamma_{walls} \end{cases} \end{equation} \item<3-> \emph{Three-element} Windkessel coupling at every outlet: \begin{equation} \begin{cases} \displaystyle C_{d,l} \frac{d \pi_l}{dt} + \frac{\pi_l}{R_{d,l}} = Q_l \\[0.2cm] P_l = R_{p,l} \ Q_l + \pi_l \end{cases} \end{equation} \end{itemize} \column{.54\textwidth} % Right column and width \onslide<1-> \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.9\textwidth]{images/windk_model.png} \caption{\footnotesize Schematic of the model} \end{center} \end{figure} \end{columns} \end{frame} \begin{frame} \frametitle{The mathematical model} \begin{columns}[c] \column{.5\textwidth} % Left column and width \footnotesize \begin{itemize} \item Incompressible Navier-Stokes equations: \begin{equation} \begin{cases} \displaystyle \rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \\[0.2cm] \nabla \cdot \vec{u} = 0 \quad \text{in} \quad \Omega \\[0.2cm] \vec{u} = \vec{u}_{inlet} \quad \text{on} \quad \Gamma_{in} \\[0.2cm] \vec{u} = 0 \quad \text{on} \quad \Gamma_{walls} \end{cases} \end{equation} \emph{Three-element} Windkessel coupling at every outlet: \begin{equation} \begin{cases} \displaystyle C_{d,l} \frac{d \pi_l}{dt} + \frac{\pi_l}{R_{d,l}} = Q_l \\[0.2cm] P_l = R_{p,l} \ Q_l + \pi_l \end{cases} \end{equation} \end{itemize} \column{.54\textwidth} % Right column and width \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.9\textwidth]{images/ref.png} \caption{\footnotesize Reference solution at peak systole} \end{center} \end{figure} \end{columns} \end{frame} %\begin{frame} % \frametitle{The mathematical model} % % \begin{columns}[c] %\column{.5\textwidth} % Left column and width %\footnotesize %\begin{itemize} %\item<1-> $u_{inlet} = -U f(t) \hat{n}$, with $f(t)$ the weaveform. %\item<2-> Fractional step scheme. %\item<3-> Semi-implicit Windkessel model. %\item<4-> Stabilized $\mathbb{P}1/\mathbb{P}1$ finite elements. %\item<4-> Implemented in FEniCS. %\end{itemize} % % %\column{.54\textwidth} % Right column and width %\begin{figure}[!hbtp] % \begin{center} % \includegraphics[height=0.9\textwidth]{images/ref.png} % \caption{\footnotesize Reference solution at peak systole} % \end{center} % \end{figure} %\end{columns} % %\end{frame} \begin{frame} \frametitle{The inverse problem} \begin{itemize} \item<1-> Upon this solution $\Longrightarrow$ build a set of measurements \item<2-> $M(\vec{x},t)= M_0(\vec{x}) exp(i\phi_0 + i \frac{\pi}{venc} u(\vec{x},t))$ \item<3-> reconstructed velocity: $u \in \big ( -venc, + venc \big )$ \item<4-> $VNR \sim 1/venc$ \end{itemize} \centering \onslide<5-> \textbf{The measurements:} \begin{itemize} \item<6-> Gaussian noise into the magnetization \item<7-> Spatial and temporal interpolation \item<8-> Only using the dominant component of the velocity: $u_z$ \item<9-> Different levels of aliasing varying the $venc$ parameter \end{itemize} \end{frame} \begin{frame} \frametitle{The inverse problem} \begin{itemize} \item Upon this solution $\Longrightarrow$ build a set of measurements \item $M(\vec{x},t)= M_0(\vec{x}) exp(i\phi_0 + i \frac{\pi}{venc} u(\vec{x},t))$ \item reconstructed velocity: $u \in \big ( -venc, + venc \big )$ \item $VNR \sim 1/venc$ \end{itemize} \begin{figure} \includegraphics[width=0.7\textwidth]{images/supra_venc.png} \caption*{Aliased measurements with different $vencs = 120,70,30 \%$ of $u_{max}$} \hfill \end{figure} \end{frame} \begin{frame} \frametitle{The inverse problem} \begin{itemize} \item Upon this solution $\Longrightarrow$ build a set of measurements \item $M(\vec{x},t)= M_0(\vec{x}) exp(i\phi_0 + i \frac{\pi}{venc} u(\vec{x},t))$ \item reconstructed velocity: $u \in \big ( -venc, + venc \big )$ \item $VNR \sim 1/venc$ \end{itemize} \begin{figure} \includegraphics[width=0.7\textwidth]{images/coartation.png} \caption*{ Aliased measurements with different $vencs = 120,70,30 \%$ of $u_{max}$} \hfill \end{figure} \end{frame} \section{The inverse problem} \begin{frame} \frametitle{The inverse problem} \begin{center} Parameter optimization \end{center} \end{frame} \begin{frame} \frametitle{The Kalman Filter} \begin{itemize} \item<1-> We use a Reduced Order Unscendent Kalman Filter (ROUKF) to reconstruct the parameter vector $\theta$: \onslide<2-> \begin{equation*} \hat{\theta} = arg \min_{\theta} J(\theta) \end{equation*} \begin{equation} J(\theta) = \displaystyle \frac{1}{2} || \theta - \theta_0 ||^2_{P_0^{-1}} + \sum_{k=1}^N \frac{1}{2} || Z_k - \mathbb{H} X_k(\theta) ||^2_{W^{-1}} \end{equation} \onslide<4-> Where: \begin{itemize} \item<4-> $Z$ the measurements and $X = (\vec{u} , \pi)$ the state variable \item<5-> $\mathbb{H}$ observation operator \item<6-> $\theta_0$ is the initial guess for the parameters \item<7-> $P_0$ is the associated covariance matrix \item<8-> $W$ is the associated covariance matrix to the meas. noise \end{itemize} \end{itemize} \end{frame} \begin{frame} \frametitle{The Kalman Filter} The parameter vector: \begin{itemize} \item<1-> Amplitude of the inlet velocity: $U$ \item<2-> Only the higher resistence: $R_d$ \end{itemize} \onslide<4-> $$\theta = (U,\vec{R_d})$$ \\ with $\vec{R_d} = R_{d,l}$ for $l=1,..., \color{red} n_{l-1}$ \\[0.3cm] \onslide<5-> \color{red} Not all the resistences can be recovered at once $\Longrightarrow$ desc. aorta fixed. \end{frame} \section{Numerical Experiments} \begin{frame} \frametitle{Numerical Experiments} \begin{center} Numerical Experiments \end{center} \end{frame} \begin{frame} \frametitle{Numerical Experiments} \footnotesize \onslide<1-> $\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$ \begin{columns} \footnotesize \column{.45\textwidth} \begin{figure} \onslide<2-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (17520,17520,17520)$ \onslide<3-> \includegraphics[width=1.2\textwidth]{images/U_Pb.png} \includegraphics[width=1.2\textwidth]{images/Rd_Pb.png} \end{figure} \column{.45\textwidth} \begin{figure} \onslide<2-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$ \onslide<4-> \includegraphics[width=1.2\textwidth]{images/U_Pc.png} \includegraphics[width=1.2\textwidth]{images/Rd_Pc.png} \end{figure} \end{columns} \end{frame} \begin{frame} \frametitle{Aliased data} \begin{center} \onslide<1-> What happend when $venc < u_{max}$ ? \begin{figure} \onslide<2-> \includegraphics[width=0.45\textwidth]{images/v120.png} \caption{Measurement set with $venc = 120 \% u_{max}$} \end{figure} \end{center} \end{frame} \begin{frame} \frametitle{Aliased data} \begin{center} What happend when $venc < u_{max}$ ? \begin{figure} \includegraphics[width=0.45\textwidth]{images/v70.png} \caption{Measurement set with $venc = 70 \% u_{max}$} \end{figure} \end{center} \end{frame} \begin{frame} \frametitle{Easy example: with $venc = 70 \% u_{max}$} \footnotesize $\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$ \begin{columns} \footnotesize \column{.45\textwidth} \begin{figure} \onslide<1-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (17520,17520,17520)$ \onslide<2-> \includegraphics[width=1.2\textwidth]{images/U_Pb_V70.png} \includegraphics[width=1.2\textwidth]{images/Rd_Pb_V70.png} \end{figure} \column{.45\textwidth} \begin{figure} \onslide<1-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$ \onslide<2-> \includegraphics[width=1.2\textwidth]{images/U_Pc_V70.png} \includegraphics[width=1.2\textwidth]{images/Rd_Pc_V70.png} \end{figure} \end{columns} \end{frame} \begin{frame} \frametitle{The Kalman Filter: A frequency defined functional} \begin{itemize} \item<1-> We proposed a change in the cost functional: \onslide<2-> \begin{equation*} \hat{\theta} = arg \min_{\theta} J(\theta) \end{equation*} \begin{equation} J(\theta) = \displaystyle \frac{1}{2} || \theta - \theta_0 ||^2_{P_0^{-1}} + \color{red} \sum_{k=1}^N 1- cos \big ( \frac{\pi}{venc} \cdot ( Z_k - \mathbb{H} X_k ) \big ) \end{equation} \end{itemize} \end{frame} \begin{frame} \frametitle{Easy example: with $venc = 70 \% u_{max}$} \footnotesize $\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$ \begin{columns} \footnotesize \column{.45\textwidth} \begin{figure} \onslide<1-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (17520,17520,17520)$ \onslide<2-> \includegraphics[width=1.2\textwidth]{images/HU_Pb_V70.png} \includegraphics[width=1.2\textwidth]{images/HRd_Pb_V70.png} \end{figure} \column{.45\textwidth} \begin{figure} \onslide<1-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$ \onslide<3-> \includegraphics[width=1.2\textwidth]{images/HU_Pc_V70.png} \includegraphics[width=1.2\textwidth]{images/HRd_Pc_V70.png} \end{figure} \end{columns} \end{frame} \begin{frame} \frametitle{Aliased data} \begin{center} Or even higher aliasing... \begin{figure} \includegraphics[width=0.45\textwidth]{images/v30.png} \caption{Measurement set with $venc = 30 \% u_{max}$} \end{figure} \end{center} \end{frame} \begin{frame} \frametitle{Easy example: with $venc = 30 \% u_{max}$} \footnotesize $\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$ \begin{columns} \footnotesize \column{.45\textwidth} \begin{figure} \onslide<1-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (17520,17520,17520)$ \onslide<2-> \includegraphics[width=1.2\textwidth]{images/HU_Pb_V30.png} \includegraphics[width=1.2\textwidth]{images/HRd_Pb_V30.png} \end{figure} \column{.45\textwidth} \begin{figure} \onslide<1-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$ \onslide<3-> \includegraphics[width=1.2\textwidth]{images/HU_Pc_V30.png} \includegraphics[width=1.2\textwidth]{images/HRd_Pc_V30.png} \end{figure} \end{columns} \end{frame} \section{Conclusions} \begin{frame} \begin{center} Conclusions \end{center} \end{frame} \begin{frame} \frametitle{Conclusions} \footnotesize \begin{itemize} \item<1-> 4D Flow measurements are promising for extracting data via inverse problems \item<2-> Noise and aliasing are the typical artifacts involved. \item<3-> Using a suitable Kalman filter, have shown to bypass aliasing defining the funcional in terms of the frequencies. \end{itemize} \onslide<4-> Future Work \begin{itemize} \item<5-> To include the capacitancies in the inverse problem (adding some pressure meas.) \item<6-> Real data! \end{itemize} \end{frame} \begin{frame} \begin{center} Thank you for your time! \end{center} \end{frame} \end{document} %\begin{frame} % \frametitle{Results} %\footnotesize % %\begin{figure} %\begin{subfigure}{.31\textwidth} % \centering % % \includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/u_15.png} % \caption*{(a) $\vec{u}_{meas}$} %\end{subfigure} %\begin{subfigure}{.01\textwidth} % \hfill %\end{subfigure} %\begin{subfigure}{.31\textwidth} % \centering % %\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/w_15.png} % \caption*{(b) $\vec{w}$} %\end{subfigure} %\begin{subfigure}{.01\textwidth} % \hfill %\end{subfigure} %\begin{subfigure}{.31\textwidth} % \centering % %\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/uc_15.png} % \caption*{(c) $\vec{u}_{meas}+\vec{w}$} %\end{subfigure} %\caption{Measurements, corrector fields and corrected velocities for all the cases.} %\label{fig:phantom_resolution} %\end{figure} % %\end{frame}