# Data assimilation on the Kalman filter

Jeremias Garay

Introduction

Assume we want to find an estimator  $\hat{X}$  of a unknown vector X, with a certain guess available  $\hat{X}^-$ , associated with a confidence matrix  $(P^-)^{-1}$ . Assume also that we have partial observation Z, satisfying  $Z = HX + \zeta^Z$ , associated with a confidence matrix  $W^{-1}$ .

Assume we want to find an estimator  $\hat{X}$  of a unknown vector X, with a certain guess available  $\hat{X}^-$ , associated with a confidence matrix  $(P^-)^{-1}$ . Assume also that we have partial observation Z, satisfying  $Z = HX + \zeta^Z$ , associated with a confidence matrix  $W^{-1}$ .

A quantity taking care of  $\hat{X}^-$  and Z can be obtained minimizing the cuadratic cost functional:

Assume we want to find an estimator  $\hat{X}$  of a unknown vector X, with a certain guess available  $\hat{X}^-$ , associated with a confidence matrix  $(P^-)^{-1}$ . Assume also that we have partial observation Z, satisfying  $Z = HX + \zeta^Z$ , associated with a confidence matrix  $W^{-1}$ .

A quantity taking care of  $\hat{X}^-$  and Z can be obtained minimizing the cuadratic cost functional:

$$J(\hat{X}) = \frac{1}{2}(\hat{X} - \hat{X}^{-})(P^{-})^{-1}(\hat{X} - \hat{X}^{-}) + \frac{1}{2}(Z - H\hat{X})W^{-1}(Z - H\hat{X})$$
(1)

Find the optimal state imposing:  $\frac{dJ}{d\hat{X}}(\hat{X}^+) = 0$ :

Find the optimal state imposing:  $\frac{dJ}{d\hat{X}}(\hat{X}^+) = 0$ :

$$-H^{T}W^{-1}Z + H^{T}W^{-1}H\hat{X} - (P^{-})^{-1}\hat{X}^{-} + (P^{-})^{-1}\hat{X} \equiv 0$$

Find the optimal state imposing:  $\frac{dJ}{d\hat{X}}(\hat{X}^+) = 0$ :

$$-H^{T}W^{-1}Z + H^{T}W^{-1}H\hat{X} - (P^{-})^{-1}\hat{X}^{-} + (P^{-})^{-1}\hat{X} \equiv 0$$

or reordering terms:

Find the optimal state imposing:  $\frac{dJ}{d\hat{X}}(\hat{X}^+) = 0$ :

$$-H^{T}W^{-1}Z + H^{T}W^{-1}H\hat{X} - (P^{-})^{-1}\hat{X}^{-} + (P^{-})^{-1}\hat{X} \equiv 0$$

or reordering terms:

$$\hat{X}^+ = \hat{X}^- + K(Z - H\hat{X}^-)$$

With  $K = P^+ H^T W^{-1}$  the Kalman matrix and  $P^+ = ((P^-)^{-1} + H^T W^{-1} H)^{-1}$ .

### **Time dependent problems**

The method could be easily expanded into time-dependent systems  $(\dot{X} = AX + F)$ :

#### **Time dependent problems**

The method could be easily expanded into time-dependent systems  $(\dot{X} = AX + F)$ :

1. Assume that  $\hat{X}_{n-1}^+$  is known with a covariance  $P_{n-1}^+$ 

Prediction

$$\hat{X}_n^- = A_n \hat{X}_{n-1}^+ + F_n$$

by linearity of  $A_n$ , the covariance of  $\hat{X}_n^-$  is equal to  $A_n P_{n-1}^+ A_n^T$ 

#### **Time dependent problems**

The method could be easily expanded into time-dependent systems  $(\dot{X} = AX + F)$ :

1. Assume that  $\hat{X}_{n-1}^+$  is known with a covariance  $P_{n-1}^+$ 

Prediction

$$\hat{X}_n^- = A_n \hat{X}_{n-1}^+ + F_n$$

by linearity of  $A_n$ , the covariance of  $\hat{X}_n^-$  is equal to  $A_n P_{n-1}^+ A_n^T$ 

2. Afterwards

Correction

$$\hat{X}_n^+ = \hat{X}_n^- + K_n(Z_n - H_n\hat{X}_n^-)$$

1. Extended Kalman Filter (EKF)

### 1. Extended Kalman Filter (EKF)

a. Taylor's expansion on the non-linear operator (tangent operators)

### 1. Extended Kalman Filter (EKF)

- a. Taylor's expansion on the non-linear operator (tangent operators)
- b. High cost if the Jacobian can be found numerically

### 1. Extended Kalman Filter (EKF)

- a. Taylor's expansion on the non-linear operator (tangent operators)
- b. High cost if the Jacobian can be found numerically
- c. Not optimal when the system is highly non-linear

### 1. Extended Kalman Filter (EKF)

- a. Taylor's expansion on the non-linear operator (tangent operators)
- b. High cost if the Jacobian can be found numerically
- c. Not optimal when the system is highly non-linear

### 2. Unscented Kalman Filter (UKF)

### 1. Extended Kalman Filter (EKF)

- a. Taylor's expansion on the non-linear operator (tangent operators)
- b. High cost if the Jacobian can be found numerically
- c. Not optimal when the system is highly non-linear
- 2. Unscented Kalman Filter (UKF)
  - a. Approximate propagation of vectors by propagating suitable particles

### 1. Extended Kalman Filter (EKF)

- a. Taylor's expansion on the non-linear operator (tangent operators)
- b. High cost if the Jacobian can be found numerically
- c. Not optimal when the system is highly non-linear

# 2. Unscented Kalman Filter (UKF)

- a. Approximate propagation of vectors by propagating suitable particles
- b. Could be shown that by computing mean and covariance of the particles, a better approx could be reached.

### 1. Extended Kalman Filter (EKF)

- a. Taylor's expansion on the non-linear operator (tangent operators)
- b. High cost if the Jacobian can be found numerically
- c. Not optimal when the system is highly non-linear
- 2. Unscented Kalman Filter (UKF)
  - a. Approximate propagation of vectors by propagating suitable particles
  - b. Could be shown that by computing mean and covariance of the particles, a better approx could be reached.
- 3. Reduced Order Unscented Kalman Filter (ROUKF)

### 1. Extended Kalman Filter (EKF)

- a. Taylor's expansion on the non-linear operator (tangent operators)
- b. High cost if the Jacobian can be found numerically
- c. Not optimal when the system is highly non-linear
- 2. Unscented Kalman Filter (UKF)
  - a. Approximate propagation of vectors by propagating suitable particles
  - b. Could be shown that by computing mean and covariance of the particles, a better approx could be reached.
- 3. Reduced Order Unscented Kalman Filter (ROUKF)
  - a. LU factorization could be performed on the covariance matrix  $P_n^-$

### **Graphical Picture: Initial State**



### **Graphical Picture: Initial State**



### **Graphical Picture: Prediction**



### **Graphical Picture: Updating Measurements**



### **Graphical Picture: Correction**



Advancing two things: Mean and covariance

Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have:

Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have:



| u (cm/s) |    |    |    |  |  |  |
|----------|----|----|----|--|--|--|
| 0        | 10 | 20 | 30 |  |  |  |
|          |    |    |    |  |  |  |

Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have:

1. The velocity measurements with the addition of some noise



Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have:

- 1. The velocity measurements with the addition of some noise
- 2. The measurement's mesh



Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have:

- 1. The velocity measurements with the addition of some noise
- 2. The measurement's mesh

We want to estimate the amplitude of the inlet flow



Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have:

- 1. The velocity measurements with the addition of some noise
- 2. The measurement's mesh

We want to estimate the amplitude of the inlet flow

$$u_{inlet} = \boldsymbol{U} \left( \boldsymbol{R}^2 - \boldsymbol{r}^2 \right) \sin(\pi t/T)$$





Reparametrized value:  $\theta_0 \cdot 2^{\theta}$ 

Aortic velocity data with reduced order boundary condition:



Aortic velocity data with reduced order boundary condition:

1. Navier-Stokes simulation with a *plug-flow* at the intlet:

$$u_{inlet} = \begin{cases} Usin(\pi t/T) & \text{if } t < T^* \\ \alpha Usin(\pi t/T')e^{-\gamma t} & \text{if } t \ge T^* \end{cases}$$



Aortic velocity data with reduced order boundary condition:

1. Navier-Stokes simulation with a *plug-flow* at the intlet:

$$u_{inlet} = \begin{cases} Usin(\pi t/T) & \text{if } t < T^* \\ \alpha Usin(\pi t/T')e^{-\gamma t} & \text{if } t \ge T^* \end{cases}$$

2. A 1-element Windkessel boundary condition is defined in every inlet.



Aortic velocity data with reduced order boundary condition:

1. Navier-Stokes simulation with a *plug-flow* at the intlet:

$$u_{inlet} = \begin{cases} Usin(\pi t/T) & \text{if } t < T^* \\ \alpha Usin(\pi t/T')e^{-\gamma t} & \text{if } t \ge T^* \end{cases}$$

2. A 1-element Windkessel boundary condition is defined in every inlet.

We want to recover the proximal resistances  $R_i$ , i = 1, 2, 3, 4 and the amplitude U from noisy velocity measurements.



# **Application: Parameter recovery** $\theta_0 2^{\theta}$



|                                   | true | recovered |
|-----------------------------------|------|-----------|
| $R_1 (dyn \cdot s \cdot cm^{-5})$ | 250  | 242.14    |
| $R_2 (dyn \cdot s \cdot cm^{-5})$ | 250  | 249.16    |
| $R_3 (dyn \cdot s \cdot cm^{-5})$ | 250  | 246.03    |
| $R_4 (dyn \cdot s \cdot cm^{-5})$ | 10   | 9.87      |
| U(cm/s)                           | 30   | 29.94     |

\_

### **Application: Parameter recovery (only using 1 vel. component)**

# **Application: Parameter recovery (only using 1 vel. component)**



Garay

|                                     | true | recovered | recovered with reduced vel |
|-------------------------------------|------|-----------|----------------------------|
| $R_1 (dyn \cdot s \cdot cm^{-5})$   | 250  | 242.14    | 247.31                     |
| $R_2 (dyn \cdot s \cdot cm^{-5})$   | 250  | 249.16    | 255.56                     |
| $R_3$ (dyn · s · cm <sup>-5</sup> ) | 250  | 246.03    | 277.37                     |
| $R_4 (dyn \cdot s \cdot cm^{-5})$   | 10   | 9.87      | 8.03                       |
| U(cm/s)                             | 30   | 29.94     | 29.80                      |

-

# Summary



• Kalman's filter uses a series of measurements and produce an estimate in two steps: Prediction and Correction

### Summary

- Kalman's filter uses a series of measurements and produce an estimate in two steps: Prediction and Correction
- The Reduced Order Kalman Filter (ROUKF) its a simplification for non-linear problems which generally run faster than others methods. (no derivatives are need it)

### Summary

- Kalman's filter uses a series of measurements and produce an estimate in two steps: Prediction and Correction
- The Reduced Order Kalman Filter (ROUKF) its a simplification for non-linear problems which generally run faster than others methods. (no derivatives are need it)
- Parameter recovery its a straightforward application.