\documentclass[xcolor=dvipsnames,notheorem,mathserifs]{beamer} \usepackage{amsmath} %\documentclass{beamer} \usepackage[english]{babel} %\usepackage[latin1]{inputenc} \usepackage{multicol} % indice en 2 columnas \usepackage[utf8]{inputenc} \usepackage{helvet} \usefonttheme{serif} %\usepackage{ccfonts} % Font family: Concrete Math \usepackage[T1]{fontenc} %\usepackage{graphicx} %\usepackage{movie15} %\usepackage{media9}[2013/11/04] \usepackage{xcolor} \usepackage{graphicx} \usepackage{multimedia} \usepackage{media9} \usepackage{listings,xcolor,caption, mathtools, wrapfig} \usepackage{amsfonts} \usepackage{amssymb,graphicx,enumerate} \usepackage{hyperref} \usepackage[normalem]{ulem} % for strike out command \sout %\usetheme{default} %\usetheme{AnnArbor} %\usetheme{Antibes} %\usetheme{Bergen} %\usetheme{Berkeley} %\usetheme{Berlin} %\usetheme{Boadilla} %\usetheme{CambridgeUS} %\usetheme{Copenhagen} %\usetheme{Darmstadt} %\usetheme{Dresden} %\usetheme{Frankfurt} %\usetheme{Goettingen} %\usetheme{Hannover} %\usetheme{Ilmenau} %\usetheme{JuanLesPins} %\usetheme{Luebeck} %\usetheme{Madrid} %\usetheme{Malmoe} %\usetheme{Marburg} %\usetheme{Montpellier} %\usetheme{PaloAlto} %\usetheme{Pittsburgh} %\usetheme{Rochester} %\usetheme{Singapore} %\usetheme{Szeged} \usetheme{Warsaw} %\usecolortheme{albatross} %\usecolortheme{beaver} %\usecolortheme{beetle} \usecolortheme{crane} %\usecolortheme{dolphin} %\usecolortheme{dove} %\usecolortheme{fly} %\usecolortheme{lily} %\usecolortheme{orchid} %\usecolortheme{rose} %\usecolortheme{seagull} %\usecolortheme{seahorse} %\usecolortheme{whale} %\usecolortheme{wolverine} %\useoutertheme{infolines} %\useoutertheme{miniframes} %\useoutertheme{sidebar} \useoutertheme{smoothbars} %\useoutertheme{shadow} %\useoutertheme{smoothtree} %\useoutertheme{split} %\useoutertheme{tree} \usepackage{amssymb,mathrsfs,amsmath,latexsym,amsthm,amsfonts} \useinnertheme{rectangles} \setbeamertemplate{navigation symbols}{} % quitar simbolitos \setbeamerfont{page number in head/foot}{size=\large} %\setbeamertemplate{footline}[frame number] number in footer \setbeamertemplate{footline}{} \title[A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI data]{ A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI} %\author[Jeremías Garay Labra] %{Jeremías Garay Labra} \institute[University of Groningen] { Bernoulli Institute\\ Faculty of Sciences and Engineering\\ University of Groningen\\[0.5cm] %\includegraphics[height=1.5cm]{Imagenes/escudoU2014.pdf} % \includegraphics[height=1cm]{Imagenes/fcfm.png} \\[0.5cm] Jeremías Garay Labra \emph{join with} Hernan Mella, Julio Sotelo, Sergio Uribe, Cristobal Bertoglio and Joaquin Mura.} \date{\today} \begin{document} \frame{\titlepage} % \onslide<1-> \begin{frame} \frametitle{Index} \tableofcontents \end{frame} \section[4D flow MRI]{4D flow MRI} \begin{frame} \frametitle{4D flow MRI} \begin{columns}[c] \column{.5\textwidth} % Left column and width \footnotesize \begin{itemize} \item<2-> Full 3D coverage of the region of interest \item<3-> Rich post-proccesing: derived parameters \end{itemize} \onslide<4-> Disadvantages: \begin{itemize} \item<5-> Long scan time \end{itemize} \column{.54\textwidth} % Right column and width \onslide<1-> \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.9\textwidth]{images/4dflow.png} \caption{\footnotesize 4D flow MRI of a human thorax} \end{center} \end{figure} \end{columns} \end{frame} \begin{frame} \frametitle{4D flow MRI} \footnotesize \onslide<1-> Strategies: \begin{itemize} \item<2-> modest spatial resolutions $ \sim (2.5 \times 2.5 \times 2.5 \ mm^3)$ \item<3-> partial data coverage \end{itemize} \begin{columns}[c] \column{.4\textwidth} % Right column and width \onslide<4-> \footnotesize \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.25\textwidth]{images/channel_noise.png} \\ (a) Noise %\caption{Noise} \end{center} \end{figure} \column{.4\textwidth} % Right column and width \onslide<5-> \footnotesize \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.25\textwidth]{images/channel_aliasing.png}\\ (b) Aliasing %\caption{Aliasing} \end{center} \end{figure} \column{.4\textwidth} % Right column and width \onslide<6-> \footnotesize \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.25\textwidth]{images/channel_under.png}\\ (c) Undersampling %\caption{Aliasing} \end{center} \end{figure} \end{columns} \vspace{0.5cm} \onslide<7-> Typical quality estimators: SNR, VNR, peak flows/velocities, mass conservation (zero divergence) \vspace{0.5cm} \onslide<8-> This work $\longrightarrow$ \textbf{conservation of linear momentum} (Navier-Stokes compatibility). \end{frame} \section[]{The corrector field} \begin{frame} \frametitle{The corrector field} \begin{center} Methodology \end{center} \end{frame} \begin{frame} \frametitle{The corrector field} \footnotesize \onslide<1-> We assume a perfect physical velocity field $\vec{u}$ \onslide<2-> \begin{eqnarray*} \rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \quad \text{in} \quad \Omega \label{eq:NSmom} \end{eqnarray*} \onslide<3-> And a corrector field $\vec{w}$ which satisfies: \onslide<4-> \begin{align} \vec{u} & = \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector}\\ \nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\ \vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC} \end{align} \onslide<5-> The corrector field $\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations. \end{frame} \begin{frame} \frametitle{The corrector field: Continuum problem} \footnotesize \onslide<1-> Applying the decomposition $\vec{u} = \vec{u}_{meas} + \vec{w}$ into the original equation and writing a variational problem for $\vec w$ we have:\\[0.2cm] Find $(\vec w(t) ,p(t)) \in H^1_0(\Omega)\times L^2(\Omega)$ such that: \onslide<2-> \begin{equation*} \int_{\Omega} \rho \frac{\partial \vec{w}}{\partial t} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas} + \vec w) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w} \notag \end{equation*} \begin{equation*} = - \int_{\Omega} \rho \frac{\partial \vec{u}_{meas}}{\partial t} \cdot \vec{v} + \rho \big ( \vec{u}_{meas} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{u}_{meas} : \nabla \vec{v} + q \nabla \cdot \vec{u}_{meas} \end{equation*} \vspace{0.2cm} \onslide<3-> or in simple terms: \onslide<4-> \begin{equation*} A(\vec w,p;\vec v ,q ) = \mathcal{L} (\vec v) \end{equation*} for all $(\vec v,q) \in H^1_0(\Omega) \times L^2(\Omega)$. \end{frame} \begin{frame} \frametitle{The corrector field: Discrete problem} \footnotesize \onslide<1-> In the Discrete, we can write the problem as follows: \onslide<2-> \begin{equation} A_{k}(\vec w,p;\vec v ,q ) + \color{blue}{S^{press}_{k}(\vec w,p;\vec v ,q)} + \color{red}{S^{conv}_{k}(\vec w;\vec v)} \color{black}{ = \mathcal{L}_j (\vec v)} \label{eq:Corrector_discrete} \end{equation} \begin{itemize} \small \item<3-> $ A_{k}(\vec w,p;\vec v ,q ) := \int_{\Omega} \frac{\rho}{\tau} \vec{w} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas}^k + \vec{w}^{k-1} ) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w} $ \vspace{0.2cm} \item<3-> $ \mathcal{L}_j (\vec v) := \int_{\Omega} \frac{\rho}{\tau} \vec{w}^{k-1} \cdot \vec{v} + \mathcal{\ell}_j (\vec v,q) $ \vspace{0.2cm} \item<4-> \color{blue}$ S^{press}_{k}(\vec w,p;\vec v ,q) := \delta \sum_{K \in \Omega}\int_{K} \frac{h_j^2}{\mu} \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{w} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla p \bigg) \cdot \notag \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{v} + \rho \big ( \vec{v} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla q \bigg ) $ \vspace{0.2cm} \item<5-> \color{red}$ S^{conv}_{k}(\vec w;\vec v) := \int_{\Omega} \frac{\rho}{2} \ \big( \nabla \cdot (\vec u^k_{meas} + \vec w^{k-1}) \big) \ \vec{w} \cdot \vec{v} $ \vspace{0.2cm} \end{itemize} \end{frame} \begin{frame} \frametitle{The corrector field: Well-posedness} \footnotesize \onslide<1-> \begin{theorem} There exists a unique solution of Problem (\ref{eq:Corrector_discrete}) under the condition: $$\rho/\tau + C_\Omega^{-2} \mu/2 - \rho 3 \| \nabla\vec u_{meas}^k\|_\infty > 0$$ for all $k>0$. \end{theorem} \onslide<2-> We can furthermore prove the following energy balance: \onslide<3-> \begin{theorem} For $(\vec w^k ,p^k)$ solution of Problem (\ref{eq:Corrector_discrete}), with $\ell_j(\vec v,q)=0$ it holds \begin{equation*}\label{eq:energy} \| \vec w^k \|^2_{L_2(\Omega)} \leq \| \vec w^{k-1} \|^2_{L_2(\Omega)} \end{equation*} under the condition \begin{equation*}\label{eq:condstab} \mu \geq C_\Omega^2 \rho \| \nabla \vec u_{meas}^k\|_\infty \end{equation*} \end{theorem} \end{frame} \section[Synthetic data]{Experiments using synthetic data } \begin{frame} \frametitle{Experiments} \begin{center} Experiments using synthetic data \end{center} \end{frame} \begin{frame} \frametitle{Numerical tests} \onslide<1-> \footnotesize \begin{columns}[c] \column{.4\textwidth} % Right column and width \footnotesize Simulated channel flow as measurements (Stokes flow) \column{.5\textwidth} % Right column and width \footnotesize \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.35\textwidth]{images/cilinder_2.png}\\ (b) Channel mesh %\caption{Aliasing} \end{center} \end{figure} \end{columns} \vspace{0.2cm} %\onslide<1-> We tested the corrector using CFD simulations as a measurements, in the following testcases: %\onslide<2-> %\begin{itemize} %\item Womersley flow in a cilinder %\item Navier-Stokes simulations in an aortic mesh %\end{itemize} \onslide<2-> Afterwards, perturbations were added: \begin{itemize} \item<3-> velocity aliasing (varying the $venc$ parameter) \item<4-> additive noise (setting SNR in decibels) \item<5-> simulated k-space undersampling (compressed sensing for the reconstruction) \end{itemize} %\onslide<7-> All simulations were done using a stabilized finite element method implemented in FEniCS. Afterwards, all numerical simulations were interpolated into a voxel-type structured mesh \end{frame} % %\begin{frame} % \frametitle{Numerical tests: channel} %\begin{columns}[c] %\column{.6\textwidth} % Left column and width %\footnotesize %\textbf{Channel:} %\begin{itemize} %\item Convective term was neglected %\item Non-slip condition at walls %\item Oscilatory pressure at $\Gamma_{inlet}$ %\end{itemize} %\column{.5\textwidth} % Right column and width %\footnotesize %\begin{figure}[!hbtp] % \begin{center} % \includegraphics[height=1.0\textwidth]{images/cilinder.png} % \caption{3D channel mesh} % \end{center} % \end{figure} %\end{columns} %\end{frame} % \begin{frame} \frametitle{Numerical tests} \begin{center} Results \end{center} \end{frame} \begin{frame} \frametitle{Aliasing and noise} \footnotesize \onslide<1-> For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$ \onslide<2-> \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.45\textwidth]{images/channel_ppt_1.png} \caption{\small Fields for the channel: $(SNR,venc) = (\infty,120\%)$. $\vec{w} \times 200$} \end{center} \end{figure} \end{frame} \begin{frame} \frametitle{Aliasing and noise} \footnotesize For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$ \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.45\textwidth]{images/channel_ppt_2.png} \caption{\small Fields for the channel: $(SNR,venc) = (\infty,80\%)$. $\vec{w} \times 4$ } %\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ } \end{center} \end{figure} \end{frame} \begin{frame} \frametitle{Aliasing and noise} \footnotesize For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$ \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.45\textwidth]{images/channel_ppt_3.png} \caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,120\%)$. $\delta \vec{u}, \vec{w} \times 4$} %\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ } \end{center} \end{figure} \end{frame} \begin{frame} \frametitle{Aliasing and noise} \footnotesize For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$ \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.45\textwidth]{images/channel_ppt_4.png} \caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,80\%)$. $\vec{w} \times 4$} %\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ } \end{center} \end{figure} \end{frame} \begin{frame} \frametitle{Aliasing and noise} \footnotesize \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.5\textwidth]{images/channel_curves_SNRinf.png} \caption{ \footnotesize Evolution of the $L-2$ norms of the components of $\vec w$} \end{center} \end{figure} \end{frame} \begin{frame} \frametitle{Aliasing and noise} \footnotesize \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.5\textwidth]{images/channel_curves_SNR10.png} \caption{ \footnotesize Evolution of the $L-2$ norms of the components of $\vec w$} \end{center} \end{figure} \end{frame} \begin{frame} \frametitle{Undersampling} \footnotesize \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.6\textwidth]{images/histo_channel.png} \caption{ \footnotesize Histograms of different undersampling rates for the channel} \end{center} \end{figure} \end{frame} %\begin{frame} % \frametitle{Results for channel: undersampling} %\footnotesize % %\begin{figure}[!hbtp] % \begin{center} % \includegraphics[height=0.6\textwidth]{images/undersampling_press.png} %\caption{ \footnotesize Different undersampling rates for the channel} % \end{center} % \end{figure} % % %\end{frame} % %\begin{frame} % \frametitle{Numerical tests: aorta} % %\begin{columns}[c] %\column{.6\textwidth} % Left column and width %\footnotesize %\textbf{Aorta} %\begin{itemize} %\item a mild coartation was added in the descending aorta %\item $u_{inlet}$ simulates a cardiac cycle %\item 3-element Windkessel for the outlets %\item Non-slip condition at walls %\end{itemize} %\column{.5\textwidth} % Right column and width %\footnotesize %\begin{figure}[!hbtp] % \begin{center} % \includegraphics[height=1.0\textwidth]{images/aorta_blender.png} %\caption{Aortic mesh} % \end{center} % \end{figure} %\end{columns} % % %\end{frame} % % %\begin{frame} % \frametitle{Results for aorta: aliasing and noise} %\footnotesize % %\begin{figure}[!hbtp] % \begin{center} % \includegraphics[height=0.7\textwidth]{images/aorta_perturbation.png} %\caption{Different perturbation scenarios for the aortic mesh} % \end{center} % \end{figure} % %\end{frame} % % %\begin{frame} % \frametitle{Results for aorta: undersampling} %\footnotesize % %\begin{figure}[!hbtp] % \begin{center} % \includegraphics[height=0.6\textwidth]{images/histo_blender.png} %\caption{ \footnotesize Histograms of different undersampling rates for the aortic mesh} % \end{center} % \end{figure} % %\end{frame} % %\begin{frame} % \frametitle{Results for aorta: undersampling} %\footnotesize % %\begin{figure}[!hbtp] % \begin{center} % \includegraphics[height=0.7\textwidth]{images/undersampling_blender.png} %\caption{ \footnotesize Different undersampling rates for the aortic mesh} % \end{center} % \end{figure} % %\end{frame} % % \section[4D flow data]{Experiments using real 4D flow data } \begin{frame} \frametitle{Experiments} \begin{center} Experiments using real 4D flow data \end{center} \end{frame} \begin{frame} \frametitle{Experiments} \footnotesize \begin{columns}[c] \column{.6\textwidth} % Left column and width \begin{itemize} \item<1-> 4D flow measurements were taken from a silicon thoracic aortic phantom made of silicon. \item<2-> A controled pump (heart rate, peak flow, stroke volume and flow waveform) \item<3-> A stenosis of $11 \ mm$ of diameter was added in the descending aorta \item<4-> The phantom was scanned using a clinical $1.5 \ T$ MR scanner (Philips Achieva, Best, The Netherlands) \end{itemize} \column{.5\textwidth} % Right column and width \begin{figure}[!hbtp] \begin{center} \footnotesize \includegraphics[height=\textwidth]{images/phantom.jpg} \caption{\footnotesize{Experiment done at the Centre of Biomedical Images (CIB) of the Catholic Unversity of Chili (PUC)}} \end{center} \end{figure} \end{columns} %\includemedia[width=0.6\linewidth,height=0.6\linewidth,activate=pageopen, %passcontext, %transparent, %addresource=images/phantom.mp4, %flashvars={source=images/phantom.mp4} %]{\includegraphics[width=0.6\linewidth]{images/phantom.jpg}}{VPlayer.swf} % \end{frame} \begin{frame} \frametitle{Results} \footnotesize \begin{figure}[!hbtp] \begin{center} \includegraphics[height=0.5\textwidth]{images/phantom_cib.png} \caption{At peak systole: a) measurements b) corrector field c) corrected measurements: $\vec u_{meas} + \vec w$} \end{center} \end{figure} \end{frame} \section{Conclusions} \begin{frame} \frametitle{Experiments} \begin{center} Conclusions \end{center} \end{frame} \begin{frame} \frametitle{Conclusions and future work} \footnotesize \onslide<1-> Potential of the new quality parameter: \begin{itemize} \item<2-> Vector fields has more details \item<3-> Artifacts recognition \end{itemize} \onslide<4-> Future: \begin{itemize} \item<5-> The use of the field for create new inverse problems which can be used for further accelerations \end{itemize} \end{frame} \begin{frame} \begin{center} \huge{Thank you for your time!} \end{center} \end{frame} %\includegraphics<1>[height=4.5cm]{images/pat1.png} %\includegraphics<2>[height=4.5cm]{images/pat2.png} \end{document}