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a b s t r a c t

Several time discretization schemes for the incompressible Navier–Stokes equations
(iNSE) in moving domains have been proposed. Here we introduce them in a
unified fashion, allowing a common well posedness and time stability analysis. It
can be therefore shown that only a particular choice of the numerical scheme en-
sures such properties. The analysis is performed for monolithic and Chorin–Temam
schemes. Results are supported by numerical experiments.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Several works have been reported dealing with the numerical solution of the iNSE in moving domains
within an Arbitrary Lagrangian Eulerian formulation (ALE), primarily in the context of fluid–solid coupling.
In particular different choices of time discretization have been reported on [1–10]. To the best of the
authors knowledge, only a few monolithic schemes have been thoroughly analyzed, e.g. in [4,5,7,11], while
no analysis has been reported for Chorin–Temam (CT) methods. The goal of this work is therefore to
assess well-posedness and unconditional energy balance of the iNSE–ALE for all reported monolithic and
CT discretization schemes within a single formulation.

The reminder of this paper is structured as follows: Section 2 provides the continuous problem that will
be studied. Section 3 introduces a general monolithic scheme that characterizes several approaches used in
literature, well-posedness and energy stability are studied and discussed. Section 4 introduces the Chorin–
Temam schemes where time stability is analyzed. Finally, Section 5 provides numerical examples testing our
results.
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2. The continuous problem

In the following, let us consider a domain Ω0 ⊂ Rd with d = 2, 3 and a deformation mapping X :
Rd × R+ ↦→ Rd that defines the time evolving domain Ω t := X (Ω0, t). We assume X a C1 mapping in

oth coordinates, 1-to-1 with C1 inverse. We denote X ∈ Rd as the cartesian coordinate system in Ω0

nd xt := X (X, t) the one in Ω t, by F t := ∂xt

∂X the deformation gradient, Ht := (F t)−1 its inverse and
t := det(F t) its Jacobian. Similarly, Grad(f) := ∂f

∂X , Div(f) := ∂
∂X · f denote the gradient and divergence

perators respectively and ϵt(f) := 1
2 (Grad(f)Ht + (Ht)T Grad(f)T ) the symmetric gradient, for f a well-

efined vector function. By H1
0(Ω0) we denote the standard Sobolev space of vector fields u defined in Ω0

ith values in Rd such that u = 0 on ∂Ω0, by L2
0(Ω0) the standard square integrable space of functions r

efined in Ω0 with values in R s.t.
∫
Ω0 r dX = 0 and T > 0 a final time. We consider the weak form of the

NSE in ALE form [12, Ch. 5]: Find (u(t), p(t)) ∈ H1
0(Ω0) × L2

0(Ω0) for t ∈ (0, T ) with u(0) = uinit s.t.∫
Ω0

ρJ t ∂u
∂t

· v + ρJ tGrad(u)Ht(u − w) · v + J t2µ ϵt(u) : ϵt(v) − Div(J tHtv)p + Div(J tHtu)q dX = 0

(1)
or all (v, q) ∈ H1

0(Ω0)×L2
0(Ω0), uinit ∈ H1

0(Ω0) given initial and w := ∂X
∂t time-varying domain velocities.

or the sake of simplicity, we omit the time-dependency on the fields u, p. Notice that the velocity flow at
ime t is given by u ◦ X −1(·, t).

roposition 1 ([13, Chap. 9]). Provided (u(t), p(t)) ∈ H1
0(Ω0) × L2

0(Ω0) a solution of Problem (1), the
ollowing energy balance holds:

∂

∂t

∫
Ω0

ρ

2J t|u|2 dX = −
∫
Ω0

J t2µ|ϵt(u)|2 dX. (2)

emark 1. Proposition 1 makes use of the Geometric Conservation Law (GCL) ∂Jt

∂t = Div
(
J tF −1

t w
)
.

Remark 2. In the general case with non-homogeneous Dirichlet boundary conditions, the energy balance
also includes flow intensification due to the moving boundary. In such case, the intensification term appearing
on the energy balance (2) is given by: ∫

∂Ω0
ρ

|u|2

2 J tHt(u − w) · N dS (3)

here N ∈ Rd denotes the outward normal.

emark 3. Although Dirichlet boundary conditions are used throughout this work, it can be extended
traightforwardly to the Neumann case by including the so called backflow stabilizations, see e.g. [14].

. Monolithic schemes (first order in time)

Most of the numerical schemes for Problem (1) reported in the literature are first order and can be written
s follows. Let (tn)n∈N be a uniform discretization of the time interval (0, T ) with step size τ > 0 and
et Hn := Htn

, Jn := J tn
, wn := w(tn) be discrete sequences. Given a conforming finite element space

× Q of H1
0(Ω0) × L2

0(Ω0) for velocity and pressure fields, the discrete problem of interest reads: Find
un+1, pn+1) ∈ V × Q s.t.

A(un+1, v) − B(v, pn+1) + B(un+1, q) = F(v) ∀(v, q) ∈ V × Q (4)

2
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A(u, v) :=
∫
Ω0

ρ
J⋆⋆

τ
u · v dX +

∫
Ω0

ρJ⋆Grad(u)H⋆(u∗ − w∗∗) · v dX +
∫
Ω0

J⋆2µϵ⋆(u) : ϵ⋆(v) dX

+ α

∫
Ω0

ρ

2

(
Jn+1 − Jn

τ
− Div (J⋆H⋆w∗∗)

)
u · v dX + β

∫
Ω0

ρ

2Div (J⋆H⋆u∗) u · v dX
(5)

ith α, β ∈ {0, 1} given parameters, and

B(u, q) :=
∫
Ω0

Div (J⋆H⋆u) q dX ∀q ∈ Q, F(v) :=
∫
Ω0

ρ
J⋆⋆

τ
un · v dX ∀v ∈ V (6)

emark 4. The term multiplying α is the discrete residual of GCL, while the one multiplying β is a strongly
onsistent term vanishing for incompressible velocity fields.

Formulation (4) contains a wide family of reported methods:

• Using α = β = 0: (⋆, ⋆⋆, ∗, ∗∗) = (n, n, n + 1, n) is used in [1], (⋆, ⋆⋆, ∗, ∗∗) = (n, n, n, n) in [2] and
(⋆, ⋆⋆, ∗, ∗∗) = (n + 1, n + 1, n + 1, n + 1) in [15], and (⋆, ⋆⋆, ∗, ∗∗) = (n + 1, n + 1, n, n + 1) in [3].

• Using α = β = 1: (⋆, ⋆⋆, ∗, ∗∗) = (n + 1, n, n, n + 1) in [4], (⋆, ⋆⋆, ∗, ∗∗) = (n + 1, n, n, n) in [5] and
(⋆, ⋆⋆, ∗, ∗∗) = (n + 1, n, n + 1, n + 1) in [7,16].

Proposition 2. By assuming well-posed, orientation-preserving deformation mappings, i.e. (Jn)n∈N
bounded in L∞(Ω0), Jn > 0 for each n ≥ 0, Problem (4) has unique solution for inf–sup stable finite element
spaces if

(
2J⋆⋆ + Jn+1 − Jn

)
> 0 and α = β = 1.

Proof. Since all operators are bounded and inf–sup stable elements are used for velocity and pressure, it
is enough to ensure that the bilinear form A is coercive.

Indeed:
A(u, u) =

∫
Ω0

J⋆

2τ

(
2J⋆⋆

J⋆
+ α

Jn+1 − Jn

J⋆

)
|u|2 + J⋆2µ|ϵ⋆(u)|2 dX

+
∫
Ω0

ρ

2Div

(
J⋆H⋆

(
(β − 1)u∗ − (α − 1)w∗∗))

|u|2 dX
(7)

eing the last quantity strictly positive under the stated assumptions. □

emark 5. The extension of Proposition 2 to the case with non-homogeneous Dirichlet boundary
onditions follows from the trace theorem by assuming Ω0 a Lipschitz bounded open set [17].

orollary 3. Assuming α = β = 1, Problem (4) is well posed when:

• 3Jn+1 − Jn > 0 if ⋆⋆ = n + 1, i.e. a restriction on the time step size.
• Jn+1 + Jn > 0 if ⋆⋆ = n, i.e. no restriction on the time step size, since we assume orientation preserving

deformation mappings.

o restrictions apply to ⋆, ∗, ∗∗.

roposition 4. Under assumptions of Proposition 2 and α = β = 1, ⋆⋆ = n, the scheme (4) is
nconditionally energy stable with energy estimate:∫

Ω0
ρ

Jn+1

2τ
|un+1|2 dX −

∫
Ω0

ρ
Jn

2τ
|un|2 dX = −

∫
Ω0

2µJ⋆|ϵ⋆(un+1)|2 dX −
∫
Ω0

ρ

2τ
Jn|un+1 − un|2 dX. (8)
3
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Proof. By setting v = un+1 in the bi-linear form (5), q = pn+1 in forms (6) and manipulating terms as
tandard in literature, the energy equality follows:∫
Ω0

ρ
Jn+1

2τ
|un+1|2 dX −

∫
Ω0

ρ
Jn

2τ
|un|2 dX =

∫
Ω0

ρ

2τ
(Jn+1 − J⋆⋆)|un+1|2 dX +

∫
Ω0

ρ

2τ
(J⋆⋆ − Jn)|un|2 dX

−
∫
Ω0

2µJ⋆|ϵ⋆(un+1)|2 dX

−
∫
Ω0

ρ

2τ
J⋆⋆|un+1 − un|2 dX

+
∫
Ω0

ρ

2Div(J⋆H⋆(u∗ − w∗∗))|un+1|2 dX

−
∫
Ω0

ρ

2α
Jn+1 − Jn

τ
|un+1|2 dX

+
∫
Ω0

ρ

2Div (J⋆H⋆(βu∗ − αw∗∗)) |un+1|2 dX

(9)
hus, for α = β = 1 and ⋆⋆ = n the result follows. □

emark 6. This work focuses on first-order schemes in time. The reason is that second order schemes,
lthough stable in fixed domain, has been shown to be only conditionally stable in ALE form, as it was
hown in [18] for the advection–diffusion problem for Crank–Nicolson (CN) and BDF(2). Therefore, we do
ot analyze here the schemes used in [9,10,19] – based on CN and used in the context of fluid–solid interaction

since their analysis repeats from [18]. Also in the same context, some authors have used the generalized
-methods since it is a popular scheme for elastodynamics [8]. However, there is no reported stability analysis
ven for the fixed domain setting, and its stability properties are usually assumed to be transferred from the
inear setting.

. Chorin-Temam schemes

In the following, we describe a family of Chorin–Temam (CT) schemes for the iNSE–ALE problem,
s we did for the monolithic case. Given Ṽ a conforming space of H1

0(Ω0) and Q̃ a conforming space of
2
0(Ω0) ∩ H1(Ω0), ũ0 ∈ Ṽ, for n ≥ 0:

1. Pressure-Projection Step (PPS)n Find pn ∈ Q̃ s.t.∫
Ω0

τ

ρ
J◦Grad(pn)H◦ : Grad(q)H◦ dX = −

∫
Ω0

Div (J◦H◦ũn) q dX ∀q ∈ Q̃ (10)

2. Fluid-Viscous Step (FVS)n+1 Find ũn+1 ∈ Ṽ s.t.∫
Ω0

ρJ⋆⋆ ũn+1 − ũn

τ
· v dX

+
∫
Ω0

ρJ⋆Grad(ũn+1)H⋆(ũn − w∗∗) · v dX +
∫
Ω0

J⋆2µϵ⋆(ũn+1) : ϵ⋆(v) dX

−
∫
Ω0

Div(J◦◦H◦◦v)pn dX +
∫
Ω0

ρ

2
Jn+1 − Jn

τ
ũn+1 · v dX

+
∫
Ω0

ρ

2Div (J⋆H⋆(ũn − w∗∗)) ũn+1 · v dX = 0 ∀v ∈ Ṽ

(11)
4
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The following energy estimate can be obtained under suitable conditions:

Proposition 5. Under assumptions ◦ = ◦◦ = ⋆⋆ = n, the solution to scheme (10)–(11) is unconditionally
stable, i.e.∫

Ω0
ρ

Jn+1

2τ
|ũn+1|2 dX −

∫
Ω0

ρ
Jn

2τ
|ũn|2 dX ≤ −

∫
Ω0

J⋆2µ|ϵ⋆(ũn+1)|2 dX −
∫
Ω0

Jn τ

2ρ
|Grad(pn)Hn|2 dX.

(12)

roof. As standard in literature, let us take v = ũn+1 in (FVS)n+1, and q = pn in (PPS)n. Adding both
qualities and rewriting expressions, it follows:∫
Ω0

ρ
Jn+1

2τ
|ũn+1|2 dX −

∫
Ω0

ρ
Jn

2τ
|ũn|2 dX =

∫
Ω0

ρ

2τ
(Jn+1 − J⋆⋆)|ũn+1|2 dX +

∫
Ω0

ρ

2τ
(J⋆⋆ − Jn)|ũn|2 dX

−
∫
Ω0

ρ

2τ
J⋆⋆|ũn+1 − ũn|2 dX −

∫
Ω0

J⋆2µ|ϵ⋆(ũn+1)|2 dX

+
∫
Ω0

Div
(
J◦◦H◦◦(ũn+1 − ũn)

)
pn dX

+
∫
Ω0

Div ((J◦◦H◦◦ − J◦H◦)ũn) pn dX

−
∫
Ω0

τ

ρ
J◦|(H◦)T Grad(pn)|2 dX

−
∫
Ω0

ρ

2τ
(Jn+1 − Jn)|ũn+1|2 dX

(13)
Bounding the first divergence term using integration by parts and Cauchy–Schwarz inequality, it follows∫
Ω0

Div
(
J◦◦H◦◦(ũn+1 − ũn)

)
pn dX ≤

∫
Ω0

ρ

2τ
J◦◦|ũn+1 − ũn|2 dX +

∫
Ω0

τ

2ρ
J◦◦|(H◦◦)T Grad(pn)|2 dx

(14)
Thus, the following energy estimate can be obtained:∫
Ω0

ρ
Jn+1

2τ
|ũn+1|2 dX −

∫
Ω0

ρ
Jn

2τ
|ũn|2 dX ≤

∫
Ω0

ρ

2τ
(Jn+1 − J⋆⋆)|ũn+1|2 dX +

∫
Ω0

ρ

2τ
(J⋆⋆ − Jn)|ũn|2 dX

−
∫
Ω0

ρ

2τ
J⋆⋆|ũn+1 − ũn|2 dX −

∫
Ω0

J⋆2µ|ϵ⋆(ũn+1)|2 dX

+
∫
Ω0

ρ

2τ
J◦◦|ũn+1 − ũn|2 dX

+
∫
Ω0

τ

2ρ
J◦◦|(H◦◦)T Grad(pn)|2 dX

+
∫
Ω0

Div ((J◦◦H◦◦ − J◦H◦)ũn) pn dX

−
∫
Ω0

τ

ρ
J◦|(H◦)T Grad(pn)|2 dX

−
∫
Ω0

ρ

2τ
(Jn+1 − Jn)|ũn+1|2 dX

(15)
From estimate (15) it follows that whenever ◦ = ◦◦ = ⋆⋆ = n unconditional energy stability is attained,

where ⋆ remains free of choice. □
5
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Fig. 1. Summary of the numerical experiment in terms of energy balance. Left: Monolithic residual error values δ̂M; Right:
horin–Temam residual error values δ̂CT.

. Numerical examples

We consider a rectangular domain with opposite vertices {(0, −1), (6, 1)} where the iNSE–ALE formu-
ation (1) will be simulated over the interval (0, 2) [s] with non-zero initial condition of the form u(0) :=
γ(1 − X2

1)X0(6 − X0), 0
)
, γ = 0.001. The domain is deformed using X (X, t) :=

(
(1 + 0.9sin(8πt))X0, X1

)
.

Discretization setup for Formulation (4) and (10)–(11) is done choosing a time step τ = 0.01 and space
riangulation with elements diameter h ≈ 0.01, implemented through FEniCS [20] using Python for interface
nd postprocessing.

To exemplify the theoretical results from previous sections, four schemes are taken into account. Mono-
ithic (M) Formulation (4) is taken with linearized convective term and implicit treatment, i.e., (⋆, ∗, ∗∗) =
n + 1, n, n + 1) where for ⋆⋆ we consider two choices, denoted M ⋆ ⋆ = n and M ⋆ ⋆ = n + 1. For
oth cases the space discretization is carried out with V/Q = [P2]d/P1 Lagrange finite elements. Similarly,
horin–Temam (CT) scheme (11)–(10) is taken with linearized convective term and implicit treatment,

.e. (⋆, ∗∗, ◦, ◦◦) = (n+1, n+1, n, n) with ⋆⋆ as before, denoting each scheme by CT ⋆⋆ = n and CT ⋆⋆ = n+1
ith space discretization done through Ṽ/Q̃ = [P1]d/P1 elements. In all cases homogeneous (equal to 0)
oundary conditions are imposed for the velocity, zero-mean on the pressure and α = β = 1.

The results are assessed using time-dependent normalized parameters δ̂M := δM/E⋆
st, δ̂CT := δCT/E⋆

st

efined as:

δn+1
M := Dn+1 + E⋆

st +
∫
Ω0

ρJ⋆⋆

2τ
|un+1 − un|2 dX, δn+1

CT := Dn+1 + E⋆
st +

∫
Ω0

τJ◦

2ρ
|(H◦)T Grad(pn)|2 dX

Dn+1 :=
∫
Ω0

ρ

2τ

(
Jn+1|un+1|2 − Jn|un|2

)
dX, E⋆

st =
∫
Ω0

2µJ⋆|ϵ⋆(un+1)|2 dX.

(16)
Fig. 1 shows δ̂M, δ̂CT values for each tested scheme. Propositions 4 and 5 are confirmed since δ̂M = 0

nd δ̂CT ≤ 0 if ⋆⋆ = n. For ⋆⋆ = n + 1, peaks appearing throughout the simulation are defined by the
ign change of domain velocity, i.e. in the change from expansion to contraction. Importantly, the spurious
umerical energy rate related to discretization of the GCL condition appears to be positive in expansion,
herefore being a potential source of numerical instabilities.
6
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6. Conclusion

Several reported time discretization schemes for the iNSE–ALE have been reviewed and analyzed in
terms of their well posedness at each time step and time stability. The stability analysis is confirmed by
numerical experiments. For the monolithic case, two schemes lead to well-posed energy-stable problems
whenever α = β = 1 with ⋆⋆ = n as studied in [4,5,7,16]. To the best of the authors knowledge, the
nconditionally stable Chorin–Temam scheme derived in this work has not been reported yet.
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