'Documents/Master/20-21 Semester 1/AcA Lamoth Data-analysis/Scripts/formules.py' verwijderen
This commit is contained in:
parent
6aa852cce4
commit
24a1b17445
@ -1,135 +0,0 @@
|
|||||||
# -*- coding: utf-8 -*-
|
|
||||||
"""
|
|
||||||
Created on Wed Jun 16 09:34:35 2021
|
|
||||||
|
|
||||||
@author: -
|
|
||||||
"""
|
|
||||||
import os
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from datetime import timedelta
|
|
||||||
from scipy.optimize import curve_fit
|
|
||||||
|
|
||||||
# Formulas
|
|
||||||
|
|
||||||
def ReadCSV(filename):
|
|
||||||
df = pd.read_csv(filename, names=['Datetime', 'Acc X','Acc Y', 'Acc Z'], infer_datetime_format=True)
|
|
||||||
df['Datetime'] = pd.to_datetime(df['Datetime'])
|
|
||||||
df['Date'] = [d.date() for d in df['Datetime']]
|
|
||||||
df = df.reindex(columns=['Datetime','Date','Time','Acc X','Acc Y', 'Acc Z'])
|
|
||||||
return df
|
|
||||||
|
|
||||||
def CreateDays(x, filename, path):
|
|
||||||
|
|
||||||
savename = filename.replace('.csv','')
|
|
||||||
savepath = path + savename
|
|
||||||
os.makedirs(savepath)
|
|
||||||
os.chdir(savepath)
|
|
||||||
|
|
||||||
startdate = x['Date'].iloc[0]
|
|
||||||
week = range(1,8)
|
|
||||||
|
|
||||||
for i in week:
|
|
||||||
weekdayindex = i-1
|
|
||||||
|
|
||||||
day = startdate + timedelta(days=weekdayindex)
|
|
||||||
daydate = x['Date'] == startdate + timedelta(days=weekdayindex)
|
|
||||||
dataday = x[daydate]
|
|
||||||
totalweek = {day:dataday}
|
|
||||||
|
|
||||||
savefile = totalweek[day]
|
|
||||||
varname = filename.replace('.csv','-') + str(day) + '.csv'
|
|
||||||
savefile.to_csv(varname)
|
|
||||||
|
|
||||||
print(varname +' saved')
|
|
||||||
|
|
||||||
return(totalweek)
|
|
||||||
|
|
||||||
|
|
||||||
def SVMEpoch(DF,ResampRate, ResampData):
|
|
||||||
newDF = pd.DataFrame(DF)
|
|
||||||
newDF['X2'] = np.power(newDF['Acc X'], 2)
|
|
||||||
newDF['Y2'] = np.power(newDF['Acc Y'], 2)
|
|
||||||
newDF['Z2'] = np.power(newDF['Acc Z'], 2)
|
|
||||||
newDF['SVM'] = np.sqrt(newDF[['X2', 'Y2', 'Z2']].sum(axis=1))
|
|
||||||
newDF['Datetime'] = pd.to_datetime(newDF['Datetime'])
|
|
||||||
|
|
||||||
EpochSVM = newDF.resample(ResampRate, on = ResampData).mean()
|
|
||||||
return(newDF, EpochSVM)
|
|
||||||
|
|
||||||
def func(x, a, b, c):
|
|
||||||
return a * np.exp(-b*x) + c
|
|
||||||
|
|
||||||
def SlopeWeeker(Keylist, Dict):
|
|
||||||
try:
|
|
||||||
SlopeWeek = pd.DataFrame(columns=['a','b', 'c', 'Name'])
|
|
||||||
SlopeWeek = SlopeWeek.set_index('Name')
|
|
||||||
|
|
||||||
for key in Keylist:
|
|
||||||
newDF, EpochSVM = SVMEpoch(Dict[key], '60S', 'Datetime')
|
|
||||||
|
|
||||||
ENMO = EpochSVM['SVM']-1
|
|
||||||
ENMO = ENMO*1000
|
|
||||||
|
|
||||||
for value in ENMO:
|
|
||||||
if value < 0:
|
|
||||||
value = 0
|
|
||||||
|
|
||||||
BinSize = 5
|
|
||||||
|
|
||||||
ENMOmax = int(ENMO.max())
|
|
||||||
|
|
||||||
if ENMOmax % BinSize == 0:
|
|
||||||
ENMOmax = ENMOmax+1 #to make sure that interference with binsize is impossible
|
|
||||||
|
|
||||||
MaxBin = int(ENMOmax/BinSize)+1
|
|
||||||
ENMO = ENMO.astype(int)
|
|
||||||
|
|
||||||
Counter = pd.DataFrame(np.zeros((1,MaxBin)))
|
|
||||||
|
|
||||||
for x in Counter:
|
|
||||||
Count = (x+1)*BinSize
|
|
||||||
Start = Count - BinSize
|
|
||||||
Number = ENMO.between(Start, Count).sum()
|
|
||||||
Counter[x] = Number
|
|
||||||
|
|
||||||
Counter = Counter.to_numpy()
|
|
||||||
Counter = Counter.astype(float)
|
|
||||||
Counter = Counter.flatten()
|
|
||||||
|
|
||||||
Xscale = np.arange(0,ENMOmax, BinSize)
|
|
||||||
Xscale = Xscale.astype(float)
|
|
||||||
|
|
||||||
popt, _ = curve_fit(func, Xscale, Counter, p0=None) # fit curve through points
|
|
||||||
a, b, c = popt
|
|
||||||
|
|
||||||
Trendline = func(Xscale, a, b, c)
|
|
||||||
|
|
||||||
SlopeWeek.loc[key, 'a'] = a
|
|
||||||
SlopeWeek.loc[key, 'b'] = b
|
|
||||||
SlopeWeek.loc[key, 'c'] = c
|
|
||||||
SlopeWeek.loc[key, 'ENMOmax'] = ENMOmax
|
|
||||||
|
|
||||||
PtName = key.replace('35694_00000', '')
|
|
||||||
PtName = PtName.replace('resampled-','')
|
|
||||||
PtName = PtName.replace('.csv','')
|
|
||||||
|
|
||||||
plt.figure()
|
|
||||||
plt.ylim(0,1440)
|
|
||||||
plt.xlim(0,(ENMOmax+10))
|
|
||||||
plt.title('Intensity plot ' + PtName)
|
|
||||||
plt.xlabel('Movement intensity [bins of ' + str(BinSize) + ' mg]')
|
|
||||||
plt.ylabel('Amount of time spend at intensity [min]')
|
|
||||||
plt.grid()
|
|
||||||
plt.scatter(Xscale, y=Counter)
|
|
||||||
plt.plot(Xscale, Trendline, 'r--')
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
PtName = (PtName + '.png')
|
|
||||||
plt.savefig(fname=PtName)
|
|
||||||
|
|
||||||
except:
|
|
||||||
print(PtName + ' could not be used')
|
|
||||||
|
|
||||||
return SlopeWeek
|
|
Loading…
x
Reference in New Issue
Block a user