first commit
This commit is contained in:
commit
6aa852cce4
36
DayCutter.py
Normal file
36
DayCutter.py
Normal file
@ -0,0 +1,36 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Spyder Editor
|
||||
|
||||
This is a temporary script file.
|
||||
"""
|
||||
|
||||
import os
|
||||
import pandas as pd
|
||||
|
||||
WeekPath = 'D:\AcA Mike Dijkhof\cwa files\Pt203_csv' # path to directory with .csv file of entire week
|
||||
ScriptPath = 'D:\AcA Mike Dijkhof\Scripts' # path to directory of formules.py
|
||||
|
||||
os.chdir(ScriptPath)
|
||||
|
||||
import formules
|
||||
|
||||
os.chdir(WeekPath)
|
||||
|
||||
#%%
|
||||
|
||||
for subdir, dirs, files in os.walk(WeekPath):
|
||||
print(subdir)
|
||||
os.chdir(subdir)
|
||||
for i in files:
|
||||
print(i)
|
||||
if i.startswith('._'): #skip ._ files that may be present in the folder
|
||||
continue
|
||||
|
||||
df = pd.read_csv(i, header=0, names=['Datetime', 'Acc X','Acc Y', 'Acc Z'], dtype={"Datetime": str, "Acc X": 'float32', "Acc Y": 'float32', "Acc Z": 'float32'}, infer_datetime_format=True)
|
||||
df['Datetime'] = pd.to_datetime(df['Datetime'])
|
||||
df['Date'] = [d.date() for d in df['Datetime']]
|
||||
df = df.reindex(columns=['Datetime','Date','Time','Acc X','Acc Y', 'Acc Z'])
|
||||
|
||||
formules.CreateDays(df, i, subdir)
|
||||
os.chdir(subdir)
|
61
Totalplotter.py
Normal file
61
Totalplotter.py
Normal file
@ -0,0 +1,61 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jun 26 13:27:00 2021
|
||||
|
||||
@author: D_Mik
|
||||
"""
|
||||
|
||||
import os
|
||||
import pandas as pd
|
||||
import formules
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# provide directory for formula parameters
|
||||
rootdir = 'D:\AcA Mike Dijkhof\cwa files\Pt304_csv\Pt304_week_formula'
|
||||
|
||||
d = {}
|
||||
X = list()
|
||||
|
||||
# import function parameters from previous scripts
|
||||
|
||||
for subdir, dirs, files in os.walk(rootdir):
|
||||
for file in files:
|
||||
print(file)
|
||||
os.chdir(subdir)
|
||||
|
||||
name = file.replace('Formula_','')
|
||||
name = name.replace('.csv','')
|
||||
|
||||
df = pd.DataFrame(pd.read_csv(file))
|
||||
df = df.set_index('Name')
|
||||
|
||||
scale = df['ENMOmax'].max()
|
||||
|
||||
key = name
|
||||
|
||||
d[key] = df.loc['Mean']
|
||||
X.append(scale)
|
||||
|
||||
# plot curves
|
||||
plt.figure(dpi=720)
|
||||
|
||||
for key in d:
|
||||
|
||||
formula = d[key]
|
||||
Xscale = np.arange(0, max(X), 5)
|
||||
|
||||
Y = formules.func(Xscale, formula.loc['a'], formula.loc['b'], formula.loc['c'] )
|
||||
|
||||
|
||||
plt.ylim(0,1440)
|
||||
plt.xlim(0,(max(X)+10))
|
||||
plt.plot(Xscale, Y, label=key)
|
||||
|
||||
plt.legend()
|
||||
plt.title('All 6 weeks plotter for 304') #Change to pt-number
|
||||
plt.show()
|
||||
|
||||
plt.savefig(fname='Total_weeks_304.png')
|
||||
|
||||
|
135
formules.py
Normal file
135
formules.py
Normal file
@ -0,0 +1,135 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Jun 16 09:34:35 2021
|
||||
|
||||
@author: -
|
||||
"""
|
||||
import osa
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from datetime import timedelta
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
# Formulas
|
||||
|
||||
def ReadCSV(filename):
|
||||
df = pd.read_csv(filename, names=['Datetime', 'Acc X','Acc Y', 'Acc Z'], infer_datetime_format=True)
|
||||
df['Datetime'] = pd.to_datetime(df['Datetime'])
|
||||
df['Date'] = [d.date() for d in df['Datetime']]
|
||||
df = df.reindex(columns=['Datetime','Date','Time','Acc X','Acc Y', 'Acc Z'])
|
||||
return df
|
||||
|
||||
def CreateDays(x, filename, path):
|
||||
|
||||
savename = filename.replace('.csv','')
|
||||
savepath = path + savename
|
||||
os.makedirs(savepath)
|
||||
os.chdir(savepath)
|
||||
|
||||
startdate = x['Date'].iloc[0]
|
||||
week = range(1,8)
|
||||
|
||||
for i in week:
|
||||
weekdayindex = i-1
|
||||
|
||||
day = startdate + timedelta(days=weekdayindex)
|
||||
daydate = x['Date'] == startdate + timedelta(days=weekdayindex)
|
||||
dataday = x[daydate]
|
||||
totalweek = {day:dataday}
|
||||
|
||||
savefile = totalweek[day]
|
||||
varname = filename.replace('.csv','-') + str(day) + '.csv'
|
||||
savefile.to_csv(varname)
|
||||
|
||||
print(varname +' saved')
|
||||
|
||||
return(totalweek)
|
||||
|
||||
|
||||
def SVMEpoch(DF,ResampRate, ResampData):
|
||||
newDF = pd.DataFrame(DF)
|
||||
newDF['X2'] = np.power(newDF['Acc X'], 2)
|
||||
newDF['Y2'] = np.power(newDF['Acc Y'], 2)
|
||||
newDF['Z2'] = np.power(newDF['Acc Z'], 2)
|
||||
newDF['SVM'] = np.sqrt(newDF[['X2', 'Y2', 'Z2']].sum(axis=1))
|
||||
newDF['Datetime'] = pd.to_datetime(newDF['Datetime'])
|
||||
|
||||
EpochSVM = newDF.resample(ResampRate, on = ResampData).mean()
|
||||
return(newDF, EpochSVM)
|
||||
|
||||
def func(x, a, b, c):
|
||||
return a * np.exp(-b*x) + c
|
||||
|
||||
def SlopeWeeker(Keylist, Dict):
|
||||
try:
|
||||
SlopeWeek = pd.DataFrame(columns=['a','b', 'c', 'Name'])
|
||||
SlopeWeek = SlopeWeek.set_index('Name')
|
||||
|
||||
for key in Keylist:
|
||||
newDF, EpochSVM = SVMEpoch(Dict[key], '60S', 'Datetime')
|
||||
|
||||
ENMO = EpochSVM['SVM']-1
|
||||
ENMO = ENMO*1000
|
||||
|
||||
for value in ENMO:
|
||||
if value < 0:
|
||||
value = 0
|
||||
|
||||
BinSize = 5
|
||||
|
||||
ENMOmax = int(ENMO.max())
|
||||
|
||||
if ENMOmax % BinSize == 0:
|
||||
ENMOmax = ENMOmax+1 #to make sure that interference with binsize is impossible
|
||||
|
||||
MaxBin = int(ENMOmax/BinSize)+1
|
||||
ENMO = ENMO.astype(int)
|
||||
|
||||
Counter = pd.DataFrame(np.zeros((1,MaxBin)))
|
||||
|
||||
for x in Counter:
|
||||
Count = (x+1)*BinSize
|
||||
Start = Count - BinSize
|
||||
Number = ENMO.between(Start, Count).sum()
|
||||
Counter[x] = Number
|
||||
|
||||
Counter = Counter.to_numpy()
|
||||
Counter = Counter.astype(float)
|
||||
Counter = Counter.flatten()
|
||||
|
||||
Xscale = np.arange(0,ENMOmax, BinSize)
|
||||
Xscale = Xscale.astype(float)
|
||||
|
||||
popt, _ = curve_fit(func, Xscale, Counter, p0=None) # fit curve through points
|
||||
a, b, c = popt
|
||||
|
||||
Trendline = func(Xscale, a, b, c)
|
||||
|
||||
SlopeWeek.loc[key, 'a'] = a
|
||||
SlopeWeek.loc[key, 'b'] = b
|
||||
SlopeWeek.loc[key, 'c'] = c
|
||||
SlopeWeek.loc[key, 'ENMOmax'] = ENMOmax
|
||||
|
||||
PtName = key.replace('35694_00000', '')
|
||||
PtName = PtName.replace('resampled-','')
|
||||
PtName = PtName.replace('.csv','')
|
||||
|
||||
plt.figure()
|
||||
plt.ylim(0,1440)
|
||||
plt.xlim(0,(ENMOmax+10))
|
||||
plt.title('Intensity plot ' + PtName)
|
||||
plt.xlabel('Movement intensity [bins of ' + str(BinSize) + ' mg]')
|
||||
plt.ylabel('Amount of time spend at intensity [min]')
|
||||
plt.grid()
|
||||
plt.scatter(Xscale, y=Counter)
|
||||
plt.plot(Xscale, Trendline, 'r--')
|
||||
plt.show()
|
||||
|
||||
PtName = (PtName + '.png')
|
||||
plt.savefig(fname=PtName)
|
||||
|
||||
except:
|
||||
print(PtName + ' could not be used')
|
||||
|
||||
return SlopeWeek
|
74
plotter.py
Normal file
74
plotter.py
Normal file
@ -0,0 +1,74 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Jun 16 13:03:03 2021
|
||||
|
||||
@author: -
|
||||
"""
|
||||
|
||||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
os.chdir('D:\AcA Mike Dijkhof\Scripts') # set path to folder of formules.py
|
||||
|
||||
import formules
|
||||
|
||||
rootdir = 'D:\AcA Mike Dijkhof\cwa files\Pt204_csv\Pt204_csv35694_0000020406.resampled' # provide path to .csv files of the cut weekdays
|
||||
d = {}
|
||||
|
||||
for subdir, dirs, files in os.walk(rootdir):
|
||||
print(subdir)
|
||||
for file in files:
|
||||
print(file)
|
||||
os.chdir(subdir)
|
||||
|
||||
d[file] = pd.read_csv(file, infer_datetime_format=True)
|
||||
|
||||
Keys = d.keys()
|
||||
|
||||
#%%
|
||||
|
||||
Check = formules.SlopeWeeker(Keys, d)
|
||||
Worklist = Check
|
||||
Length = pd.DataFrame(np.zeros(((1,int(len(Check)/7)))))
|
||||
|
||||
# Create PtName, this depends on subdir string so has to be changed for each patient
|
||||
PtName = subdir.replace('35694_00000', '')
|
||||
PtName = PtName.replace('D:\AcA Mike Dijkhof\cwa files\Pt204_csv\Pt204_','')
|
||||
PtName = PtName.replace('resampled-','')
|
||||
PtName = PtName.replace('.resampled','')
|
||||
PtName = PtName.replace('.csv','')
|
||||
|
||||
for i in Length:
|
||||
|
||||
CheckWeek = Worklist[:7]
|
||||
|
||||
Worklist = Worklist.drop(CheckWeek.index, axis=0)
|
||||
|
||||
CheckWeek.loc['Mean','a'] = CheckWeek['a'].median()
|
||||
CheckWeek.loc['Mean','b'] = CheckWeek['b'].median()
|
||||
CheckWeek.loc['Mean','c'] = CheckWeek['c'].median()
|
||||
|
||||
CheckWeek.to_csv('Formula_Week6.csv')
|
||||
|
||||
Xscale = np.arange(0,CheckWeek['ENMOmax'].max(), 5)
|
||||
|
||||
plt.figure()
|
||||
plt.ylim(0,1440)
|
||||
plt.xlim(0,CheckWeek['ENMOmax'].max())
|
||||
plt.title('All weekdays and average plotted ' + PtName)
|
||||
plt.xlabel('Movement intensity [bins of 5 mg]')
|
||||
plt.ylabel('Amount of time spend at intensity [min]')
|
||||
plt.grid()
|
||||
|
||||
for i, r in CheckWeek.iterrows():
|
||||
Y = formules.func(Xscale, CheckWeek.loc[i,'a'],CheckWeek.loc[i,'b'], CheckWeek.loc[i,'c'] )
|
||||
if i != 'Mean':
|
||||
plt.plot(Xscale, Y, 'grey')
|
||||
else:
|
||||
plt.plot(Xscale, Y, 'k--')
|
||||
|
||||
plt.show()
|
||||
plt.savefig(fname=('Weekplot ' + PtName+ '.png'))
|
||||
|
Loading…
x
Reference in New Issue
Block a user