'formules.py' toevoegen
This commit is contained in:
parent
5fbaa0af33
commit
9b0a644b3f
135
formules.py
Normal file
135
formules.py
Normal file
@ -0,0 +1,135 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Wed Jun 16 09:34:35 2021
|
||||||
|
|
||||||
|
@author: -
|
||||||
|
"""
|
||||||
|
import osa
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from datetime import timedelta
|
||||||
|
from scipy.optimize import curve_fit
|
||||||
|
|
||||||
|
# Formulas
|
||||||
|
|
||||||
|
def ReadCSV(filename):
|
||||||
|
df = pd.read_csv(filename, names=['Datetime', 'Acc X','Acc Y', 'Acc Z'], infer_datetime_format=True)
|
||||||
|
df['Datetime'] = pd.to_datetime(df['Datetime'])
|
||||||
|
df['Date'] = [d.date() for d in df['Datetime']]
|
||||||
|
df = df.reindex(columns=['Datetime','Date','Time','Acc X','Acc Y', 'Acc Z'])
|
||||||
|
return df
|
||||||
|
|
||||||
|
def CreateDays(x, filename, path):
|
||||||
|
|
||||||
|
savename = filename.replace('.csv','')
|
||||||
|
savepath = path + savename
|
||||||
|
os.makedirs(savepath)
|
||||||
|
os.chdir(savepath)
|
||||||
|
|
||||||
|
startdate = x['Date'].iloc[0]
|
||||||
|
week = range(1,8)
|
||||||
|
|
||||||
|
for i in week:
|
||||||
|
weekdayindex = i-1
|
||||||
|
|
||||||
|
day = startdate + timedelta(days=weekdayindex)
|
||||||
|
daydate = x['Date'] == startdate + timedelta(days=weekdayindex)
|
||||||
|
dataday = x[daydate]
|
||||||
|
totalweek = {day:dataday}
|
||||||
|
|
||||||
|
savefile = totalweek[day]
|
||||||
|
varname = filename.replace('.csv','-') + str(day) + '.csv'
|
||||||
|
savefile.to_csv(varname)
|
||||||
|
|
||||||
|
print(varname +' saved')
|
||||||
|
|
||||||
|
return(totalweek)
|
||||||
|
|
||||||
|
|
||||||
|
def SVMEpoch(DF,ResampRate, ResampData):
|
||||||
|
newDF = pd.DataFrame(DF)
|
||||||
|
newDF['X2'] = np.power(newDF['Acc X'], 2)
|
||||||
|
newDF['Y2'] = np.power(newDF['Acc Y'], 2)
|
||||||
|
newDF['Z2'] = np.power(newDF['Acc Z'], 2)
|
||||||
|
newDF['SVM'] = np.sqrt(newDF[['X2', 'Y2', 'Z2']].sum(axis=1))
|
||||||
|
newDF['Datetime'] = pd.to_datetime(newDF['Datetime'])
|
||||||
|
|
||||||
|
EpochSVM = newDF.resample(ResampRate, on = ResampData).mean()
|
||||||
|
return(newDF, EpochSVM)
|
||||||
|
|
||||||
|
def func(x, a, b, c):
|
||||||
|
return a * np.exp(-b*x) + c
|
||||||
|
|
||||||
|
def SlopeWeeker(Keylist, Dict):
|
||||||
|
try:
|
||||||
|
SlopeWeek = pd.DataFrame(columns=['a','b', 'c', 'Name'])
|
||||||
|
SlopeWeek = SlopeWeek.set_index('Name')
|
||||||
|
|
||||||
|
for key in Keylist:
|
||||||
|
newDF, EpochSVM = SVMEpoch(Dict[key], '60S', 'Datetime')
|
||||||
|
|
||||||
|
ENMO = EpochSVM['SVM']-1
|
||||||
|
ENMO = ENMO*1000
|
||||||
|
|
||||||
|
for value in ENMO:
|
||||||
|
if value < 0:
|
||||||
|
value = 0
|
||||||
|
|
||||||
|
BinSize = 5
|
||||||
|
|
||||||
|
ENMOmax = int(ENMO.max())
|
||||||
|
|
||||||
|
if ENMOmax % BinSize == 0:
|
||||||
|
ENMOmax = ENMOmax+1 #to make sure that interference with binsize is impossible
|
||||||
|
|
||||||
|
MaxBin = int(ENMOmax/BinSize)+1
|
||||||
|
ENMO = ENMO.astype(int)
|
||||||
|
|
||||||
|
Counter = pd.DataFrame(np.zeros((1,MaxBin)))
|
||||||
|
|
||||||
|
for x in Counter:
|
||||||
|
Count = (x+1)*BinSize
|
||||||
|
Start = Count - BinSize
|
||||||
|
Number = ENMO.between(Start, Count).sum()
|
||||||
|
Counter[x] = Number
|
||||||
|
|
||||||
|
Counter = Counter.to_numpy()
|
||||||
|
Counter = Counter.astype(float)
|
||||||
|
Counter = Counter.flatten()
|
||||||
|
|
||||||
|
Xscale = np.arange(0,ENMOmax, BinSize)
|
||||||
|
Xscale = Xscale.astype(float)
|
||||||
|
|
||||||
|
popt, _ = curve_fit(func, Xscale, Counter, p0=None) # fit curve through points
|
||||||
|
a, b, c = popt
|
||||||
|
|
||||||
|
Trendline = func(Xscale, a, b, c)
|
||||||
|
|
||||||
|
SlopeWeek.loc[key, 'a'] = a
|
||||||
|
SlopeWeek.loc[key, 'b'] = b
|
||||||
|
SlopeWeek.loc[key, 'c'] = c
|
||||||
|
SlopeWeek.loc[key, 'ENMOmax'] = ENMOmax
|
||||||
|
|
||||||
|
PtName = key.replace('35694_00000', '')
|
||||||
|
PtName = PtName.replace('resampled-','')
|
||||||
|
PtName = PtName.replace('.csv','')
|
||||||
|
|
||||||
|
plt.figure()
|
||||||
|
plt.ylim(0,1440)
|
||||||
|
plt.xlim(0,(ENMOmax+10))
|
||||||
|
plt.title('Intensity plot ' + PtName)
|
||||||
|
plt.xlabel('Movement intensity [bins of ' + str(BinSize) + ' mg]')
|
||||||
|
plt.ylabel('Amount of time spend at intensity [min]')
|
||||||
|
plt.grid()
|
||||||
|
plt.scatter(Xscale, y=Counter)
|
||||||
|
plt.plot(Xscale, Trendline, 'r--')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
PtName = (PtName + '.png')
|
||||||
|
plt.savefig(fname=PtName)
|
||||||
|
|
||||||
|
except:
|
||||||
|
print(PtName + ' could not be used')
|
||||||
|
|
||||||
|
return SlopeWeek
|
Loading…
x
Reference in New Issue
Block a user