diff --git a/dataflow_neuro/registers.act b/dataflow_neuro/registers.act index 215e433..38e7767 100644 --- a/dataflow_neuro/registers.act +++ b/dataflow_neuro/registers.act @@ -51,8 +51,9 @@ namespace tmpl { // - the last wl the word to write // data -> the data saved in the flip flop, sized wl x nw export template -defproc register_rw (avMx1of2<1+log_nw+wl> in; d1of data[2< in; d1of data[2< in_temp; (i:1+log_nw+wl:in_temp.d[i] = in.d.d[i];) @@ -60,53 +61,50 @@ defproc register_rw (avMx1of2<1+log_nw+wl> in; d1of data[2< val_input_X(.in = _in_v_temp,.out = in.v,.supply = supply); in.v = _in_v_temp; // Generation of the clock pulse - delayprog dly(.in = _in_v_temp, .s = _clock_temp, .supply = supply); - sigbuf_1output<4> val_input_X(.in = _clock_temp,.out = _clock,.supply = supply); + delayprog clk_dly(.in = _in_v_temp, .out = _clock_temp,.s = dly_cfg, .supply = supply); + sigbuf_1output<4> clk_X(.in = _clock_temp,.out = _clock,.supply = supply); // Sending back to the ackowledge - delayprog dly(.in = _clock, .s = _in_a_temp, .supply = supply); - sigbuf_1output<4> val_input_X(.in = _in_a_temp,.out = in.a,.supply = supply); + delayprog ack_dly(.in = _clock, .out = _in_a_temp,.s = dly_cfg, .supply = supply); + sigbuf_1output<4> ack_input_X(.in = _in_a_temp,.out = in.a,.supply = supply); //Reset Buffers - bool _reset_BX,_reset_mem_BX,_reset_mem_BXX[_nw*w]; - BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss); - BUF_X1 reset_buf(.a=reset_mem_B, .y=_reset_mem_BX,.vdd=supply.vdd,.vss=supply.vss); - sigbuf<_nw*wl> reset_bufarray(.in=_reset_mem_BX, .out=_reset_BXX_mem,.vdd=supply.vdd,.vss=supply.vss); + bool _reset_BX,_reset_mem_BX,_reset_mem_BXX[_nw*wl]; + BUF_X1 reset_buf_BX(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss); + BUF_X1 reset_buf_BXX(.a=reset_mem_B, .y=_reset_mem_BX,.vdd=supply.vdd,.vss=supply.vss); + sigbuf<_nw*wl> reset_bufarray(.in=_reset_mem_BX, .out=_reset_mem_BXX,.supply=supply); // Creating the different flip flop arrays - bool _nw = 2< atree[_nw]; AND2_X1 and_encoder[_nw]; - sigbuf clock_buffer; + sigbuf clock_buffer[_nw]; DFFQ_R_X1 ff[_nw*wl]; - (k:_nw:atree_x[k].supply = supply;) + pint _bitval; + (k:_nw:atree[k].supply = supply;) (_word_idx:_nw: // Decoding the bit pattern to understand which word we are looking at (pin_idx:log_nw: - bitval = (_word_idx & ( 1 << pin_idx )) >> pin_idx; // Get binary digit of integer i, column j - [bitval = 1 -> + _bitval = (_word_idx & ( 1 << pin_idx )) >> pin_idx; // Get binary digit of integer i, column j + [_bitval = 1 -> atree[_word_idx].in[pin_idx] = in.d.d[pin_idx+1].t; - [] bitval = 0 -> + [] _bitval = 0 -> atree[_word_idx].in[pin_idx] = in.d.d[pin_idx+1].f; - []bitval >= 2 -> {false : "fuck"}; + []_bitval >= 2 -> {false : "fuck"}; ] ) // Activating the fake clock for the right word - atree_x[_word_idx].out = _out_encoder[_word_idx]; + atree[_word_idx].out = _out_encoder[_word_idx]; and_encoder[_word_idx].a = _out_encoder[_word_idx]; and_encoder[_word_idx].b = _clock; and_encoder[_word_idx].y = _clock_word_temp[_word_idx]; and_encoder[_word_idx].vdd = supply.vdd; and_encoder[_word_idx].vss = supply.vss; clock_buffer[_word_idx].in = _clock_word_temp[_word_idx]; - clock_buffer[_word_idx].out = _clock_word[_word_idx]; - clock_buffer[_word_idx].vdd = supply.vdd; - clock_buffer[_word_idx].vss = supply.vss; + clock_buffer[_word_idx].supply = supply; // Describing all the FF and their connection (_bit_idx:wl: - ff[_bit_idx*(1+_word_idx)].clk = _clock_word[_word_idx]; - ff[_bit_idx*(1+_word_idx)].d = in.d.d[_bit_idx+1+log_nw]; + ff[_bit_idx*(1+_word_idx)].clk = clock_buffer[_word_idx].out[_bit_idx]; + ff[_bit_idx*(1+_word_idx)].d = in.d.d[_bit_idx+1+log_nw].t; ff[_bit_idx*(1+_word_idx)].q = data[_word_idx].d[_bit_idx]; - ff[_bit_idx*(1+_word_idx)].reset_B = reset_mem_BXX[_bit_idx*(1+_word_idx)]; + ff[_bit_idx*(1+_word_idx)].reset_B = _reset_mem_BXX[_bit_idx*(1+_word_idx)]; ff[_bit_idx*(1+_word_idx)].vdd = supply.vdd; ff[_bit_idx*(1+_word_idx)].vss = supply.vss; )