/************************************************************************* * * This file is part of ACT dataflow neuro library * * Copyright (c) 2022 University of Groningen - Ole Richter * Copyright (c) 2022 University of Groningen - Michele Mastella * Copyright (c) 2022 University of Groningen - Hugh Greatorex * Copyright (c) 2022 University of Groningen - Madison Cotteret * * * This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later * * You may redistribute and modify this documentation and make products * using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl). * This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY * AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2 * for applicable conditions. * * Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro * * As per CERN-OHL-W v2 section 4.1, should You produce hardware based on * these sources, You must maintain the Source Location visible in its * documentation. * ************************************************************************** */ import "../../dataflow_neuro/cell_lib_async.act"; import "../../dataflow_neuro/cell_lib_std.act"; import "../../dataflow_neuro/treegates.act"; import "../../dataflow_neuro/primitives.act"; import "../../dataflow_neuro/coders.act"; // import tmpl::dataflow_neuro; // import tmpl::dataflow_neuro; import std::channel; open std::channel; namespace tmpl { namespace dataflow_neuro { /** * Buffer for use in an A-cell register. * Basically the same as a normal buffer, except that when out.v goes high, * in.a goes high too. * Also, in.a does not wait for out.v to go low to go to low. * Means have a buffer that completes its Right handshake as soon as out data is valid. */ export template defproc buffer_register(avMx1of2 in; Mx1of2 out; bool? out_v, flush, reset_B; power supply) { //control bool _en, _reset_BX[N]; bool _in_aB; bool _reset; bool _resetX[N]; // Reset sigs INV_X1 reset_inv(.a = reset_B, .y = _reset, .vdd = supply.vdd, .vss = supply.vss); sigbuf reset_sb(.in = _reset, .out = _resetX, .supply = supply); sigbuf resetB_sb(.in=reset_B, .out=_reset_BX, .supply = supply); A_2C1N_R_X1 inack_ctl(.c1=_in_aB,.c2=in.v,.n1=out_v,.y=_in_aB, .pr_B=_reset_BX[0],.sr_B=_reset_BX[0],.vdd=supply.vdd,.vss=supply.vss); INV_X1 inack_inv(.a = _in_aB, .y = in.a, .vdd = supply.vdd, .vss = supply.vss); // Flush sigs bool _flushB, _flushBX[N*2]; INV_X1 flush_inv(.a = flush, .y = _flushB); sigbuf flushB_sb(.in = _flushB, .out = _flushBX, .supply = supply); _en = _in_aB; //validity bool _in_v; vtree vc(.in=in.d,.out=_in_v,.supply=supply); BUF_X4 in_v_buf(.a=_in_v, .y=in.v,.vdd=supply.vdd,.vss=supply.vss); //function bool _out_a_BX_t[N],_out_a_BX_f[N],_out_a_B; A_1C2N_SB_X4 f_buf_func[N]; A_1C2N_RB_X4 t_buf_func[N]; sigbuf en_buf(.in=_en, .supply=supply); (i:N: f_buf_func[i].y=out.d[i].f; t_buf_func[i].y=out.d[i].t; f_buf_func[i].c1=_flushBX[i]; t_buf_func[i].c1=_flushBX[i+N]; f_buf_func[i].n2=en_buf.out[i]; t_buf_func[i].n2=en_buf.out[i+N]; f_buf_func[i].n1=in.d.d[i].f; t_buf_func[i].n1=in.d.d[i].t; f_buf_func[i].vdd=supply.vdd; t_buf_func[i].vdd=supply.vdd; f_buf_func[i].vss=supply.vss; t_buf_func[i].vss=supply.vss; f_buf_func[i].pr = _resetX[i]; f_buf_func[i].sr = _resetX[i]; t_buf_func[i].pr_B = _reset_BX[i]; t_buf_func[i].sr_B = _reset_BX[i]; ) } /** * A single register made out of A cells. * MSB is whether to read or write. * Currently only handles writing. */ export template defproc register_acells(avMx1of2 in; Mx1of2 out; bool? reset_B; power supply) { bool _en2; bool _w; bool _out_v, _out_vB; bool _flush, _flushB; _w = in.d.d[N].t; // Buffer buffer_register buf(.out = out, .out_v = _out_v, .flush = _flush, .supply = supply, .reset_B = reset_B); buf.in.v = in.v; // In ack stuff INV_X1 in_ack_inv(.a = buf.in.a, .vdd = supply.vdd, .vss = supply.vss); // To stop in ack going low before en2 has been reset. A_1C1N_X1 in_ack_safety(.c1 = in_ack_inv.y, .n1 = _en2, .y = in.a, .vdd = supply.vdd, .vss = supply.vss); // Out valid tree vtree out_valid(.in = buf.out, .out = _out_v, .supply = supply); INV_X2 out_val_inv(.a = _out_v, .y = _out_vB, .vdd = supply.vdd, .vss=supply.vss); // Control A_1C1P2N_RB_X1 A_flush(.c1 = _en2, .n1 = _out_v, .n2 = _w, .p1 = _flushB, .y = _flush, .vdd = supply.vdd, .vss = supply.vss, .sr_B = reset_B, .pr_B = reset_B); INV_X2 flush_inv(.a = _flush, .y = _flushB, .vdd = supply.vdd, .vss = supply.vss); A_1C2N_R_X1 A_en2(.c1 = _w, .n1 = _en2, .n2 = _out_vB, .y = _en2, .pr_B = reset_B, .sr_B = reset_B); // Pass to let data into the buffer NOR2_X1 pass(.a = _en2, .b = _flush, .vss = supply.vss, .vdd = supply.vdd); sigbuf passX(.in = pass.y, .supply = supply); AND2_X1 gandalf_t[N]; AND2_X1 gandalf_f[N]; (i:0..N-1: gandalf_t[i].a = in.d.d[i].t; gandalf_f[i].a = in.d.d[i].f; gandalf_t[i].b = passX.out[i]; gandalf_f[i].b = passX.out[i+N]; gandalf_t[i].y = buf.in.d.d[i].t; gandalf_f[i].y = buf.in.d.d[i].f; gandalf_t[i].vdd = supply.vdd; gandalf_f[i].vdd = supply.vdd; gandalf_t[i].vss = supply.vss; gandalf_f[i].vss = supply.vss; ) } /** * Array of registers made out of A-cells * params: * NcW: number of bits in Words to be stored in buffers * NcA: number of bits in Address * M: number of registers. M = 2^Nc_addr would be a natural choice. * Input packets should be * [-addr-][-word-][r/w] */ // UNUSED // UNUSED // UNUSED // UNUSED // export template // defproc register_w_array(avMx1of2 in; Mx1of2 data[M]; // bool? reset_B; power supply) { // // BIG TODO // // I HAVE NOT BOTHERED WITH ANY SIGNAL BUFFERING IN HERE YET // vtree input_valid(.in = in.d, .out = in.v, // .supply = supply); // // Address decoder // decoder_dualrail decoder(.supply = supply); // (i:NcA: // decoder.in.d[i] = in.d.d[i]; // ) // // OrTree over acks from all registers // ortree ack_ortree(.supply = supply); // // C element handling in ack // A_2C_B_X1 in_ack_Cel(.c1 = ack_ortree.out, .c2 = input_valid.out, .y = in.a, // .vss = supply.vss, .vdd = supply.vdd); // // Write bit selector // bool _w = in.d.d[NcA+NcW].t; // A_2C_B_X1 write_selectors[M]; // (i:M: // write_selectors[i].c1 = _w; // write_selectors[i].c2 = decoder.out[i]; // write_selectors[i].vdd = supply.vdd; // write_selectors[i].vss = supply.vss; // ) // // Registers // register_acells registers[M]; // TIELO_X1 tielow_writebit_f[M]; // (i:M: // // Connect each register to word inputs. // (j:NcW: // registers[i].in.d.d[j] = in.d.d[j + NcA]; // ) // // Connect the (selected) write bit // registers[i].in.d.d[NcW].t = write_selectors[i].y; // tielow_writebit_f[i].vdd = supply.vdd; // tielow_writebit_f[i].vss = supply.vss; // registers[i].in.d.d[NcW].f = tielow_writebit_f[i].y; // // Connect to ack ortree // registers[i].in.a = ack_ortree.in[i]; // // Connect outputs // data[i] = registers[i].out; // registers[i].supply = supply; // registers[i].reset_B = reset_B; // ) // } /** * Array of registers made out of A-cells * params: * NcW: number of bits in Words to be stored in buffers * NcA: number of bits in Address * M: number of registers. M = 2^Nc_addr would be a natural choice. * Input packets should be * [-addr-][-word-][r/w] */ export template defproc register_wr_array(avMx1of2 in; Mx1of2 data[M]; avMx1of2 out; bool? reset_B; power supply) { // Input valid tree vtree input_valid(.in = in.d, .out = in.v, .supply = supply); // Address decoder decoder_dualrail decoder(.supply = supply); (i:NcA: decoder.in.d[i] = in.d.d[i]; ) // OrTree over acks from all registers ortree ack_ortree(.supply = supply); bool _write_ack; // C element handling in ack A_2C_B_X1 in_ack_Cel(.c1 = ack_ortree.out, .c2 = input_valid.out, .y = _write_ack, .vss = supply.vss, .vdd = supply.vdd); // Bit to join the acks either from read or write bool _read_ack; _read_ack = out.a; OR2_X1 ack_rw_or(.a = _read_ack, .b = _write_ack, .vdd = supply.vdd, .vss = supply.vss); A_2C_B_X1 ack_safety(.c1 = ack_rw_or.y, .c2 = in.v, .y = in.a); // Write bit selector bool _w = in.d.d[NcA+NcW].t; bool _wX[M]; sigbuf _w_sb(.in = _w, .out = _wX, .supply = supply); A_2C_B_X1 write_selectors[M]; (i:M: write_selectors[i].c1 = _wX[i]; write_selectors[i].c2 = decoder.out[i]; write_selectors[i].vdd = supply.vdd; write_selectors[i].vss = supply.vss; ) // Registers register_acells registers[M]; TIELO_X1 tielow_writebit_f[M]; (i:M: // Connect each register to word inputs. (j:NcW: registers[i].in.d.d[j] = in.d.d[j + NcA]; ) // Connect the (selected) write bit registers[i].in.d.d[NcW].t = write_selectors[i].y; tielow_writebit_f[i].vdd = supply.vdd; tielow_writebit_f[i].vss = supply.vss; registers[i].in.d.d[NcW].f = tielow_writebit_f[i].y; // Connect to ack ortree registers[i].in.a = ack_ortree.in[i]; // Connect outputs data[i] = registers[i].out; registers[i].supply = supply; registers[i].reset_B = reset_B; ) // Read bit selector bool _r = in.d.d[NcA+NcW].f; bool _rX[M+NcA]; sigbuf _r_sb(.in = _r, .out = _rX, .supply = supply); A_2C_B_X1 read_selectors[M]; sigbuf_boolarray read_selectorsX(.supply = supply); (i:M: read_selectors[i].c1 = _rX[i]; read_selectors[i].c2 = decoder.out[i]; read_selectors[i].vdd = supply.vdd; read_selectors[i].vss = supply.vss; read_selectorsX.in[i] = read_selectors[i].y; ) // OrTrees for each output word bit on read ortree out_ortrees_t[NcW]; ortree out_ortrees_f[NcW]; (i:NcW: out_ortrees_t[i].out = out.d.d[i+NcA].t; out_ortrees_f[i].out = out.d.d[i+NcA].f; out_ortrees_t[i].supply = supply; out_ortrees_f[i].supply = supply; ) // ANDs over each reg's data // and whether it is selected for read. AND2_X1 and_reads_t[NcW * M]; AND2_X1 and_reads_f[NcW * M]; pint index; (i:NcW: (j:M: index = i + j*NcW; and_reads_t[index].a = data[j].d[i].t; and_reads_t[index].b = read_selectorsX.out[j]; and_reads_f[index].a = data[j].d[i].f; and_reads_f[index].b = read_selectorsX.out[j]; and_reads_t[index].y = out_ortrees_t[i].in[j]; and_reads_f[index].y = out_ortrees_f[i].in[j]; and_reads_t[index].vss = supply.vss; and_reads_t[index].vdd = supply.vdd; and_reads_f[index].vss = supply.vss; and_reads_f[index].vdd = supply.vdd; ) ) // C elements passing address to out on read. A_2C_B_X1 addr_read_t[NcA]; A_2C_B_X1 addr_read_f[NcA]; (i:NcA: addr_read_t[i].c1 = in.d.d[i].t; addr_read_f[i].c1 = in.d.d[i].f; addr_read_t[i].c2 = _rX[M+i]; addr_read_f[i].c2 = _rX[M+i]; addr_read_t[i].y = out.d.d[i].t; addr_read_f[i].y = out.d.d[i].f; addr_read_t[i].vdd = supply.vdd; addr_read_t[i].vss = supply.vss; addr_read_f[i].vdd = supply.vdd; addr_read_f[i].vss = supply.vss; ) } }}