/************************************************************************* * * This file is part of ACT dataflow neuro library * * Copyright (c) 2022 University of Groningen - Ole Richter * Copyright (c) 2022 University of Groningen - Michele Mastella * Copyright (c) 2022 University of Groningen - Hugh Greatorex * Copyright (c) 2022 University of Groningen - Madison Cotteret * * * This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later * * You may redistribute and modify this documentation and make products * using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl). * This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY * AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2 * for applicable conditions. * * Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro * * As per CERN-OHL-W v2 section 4.1, should You produce hardware based on * these sources, You must maintain the Source Location visible in its * documentation. * ************************************************************************** */ import "../../dataflow_neuro/cell_lib_async.act"; import "../../dataflow_neuro/cell_lib_std.act"; import "../../dataflow_neuro/treegates.act"; import "../../dataflow_neuro/primitives.act"; // import tmpl::dataflow_neuro; // import tmpl::dataflow_neuro; import std::channel; open std::channel; namespace tmpl { namespace dataflow_neuro { /** * 2D decoder which uses a configurable delay from the VCtrees to buffer ack. * Nx is the x size of the decoder array * NxC is the number of wires in the x channel. * Thus NxC should be something like NxC = ceil(log2(Nx)) * but my guess is that we can't do logs... * N_dly_cfg is the number of config bits in the ACK delay line, * with all bits high corresponding to 2**N_dly_cfg -1 DLY1_X4 cells. */ // export template // defproc decoder_2d_dly (avMx1of2 in; bool? dly_cfg[N_dly_cfg], reset_B; power supply) { // // Buffer to recieve concat(x,y) address packet // buffer addr_buf(.in = in, .reset_B = reset_B, .supply = supply); // // NEED TO BUFFER OUTPUTS FROM BUFFER I RECKON // // Validity trees // vtree vtree_x (.power = supply); // vtree vtree_y (.power = supply); // (i:0..NxC-1:vtree_x.in.d[i].t = addr_buf.out.d.d[i].t;) // (i:0..NxC-1:vtree_x.in.d[i].f = addr_buf.out.d.d[i].f;) // (i:0..NyC-1:vtree_y.in.d[i].t = addr_buf.out.d.d[i+NxC].t;) // (i:0..NyC-1:vtree_y.in.d[i].f = addr_buf.out.d.d[i+NxC].f;) // // Delay ack line. Ack line is delayed (but not the val) // A_2X_B_X1 C2el(.a = vtree_x.out, .b = vtree_y.out, .supply = supply); // addr_buf.out.v = C2el.y; // delayprog dly(.in = C2el.y, .s = dly_cfg, .supply = supply); // delayprog.out = addr_buf.out.a; // // AND trees // pint bitval; // andtree atree_x[Nx]; // (i:0..Nx-1: // (j:0..NxC: // bitval = (i & ( 1 << j )) >> j; // Get binary digit of integer i, column j // [bitval == 1 -> // atree_x[i].in[j] = addr_buf.out.d.d[j].t // []bitval == 0 -> // atree_x[i].in[j] = addr_buf.out.d.d[j].f // ] // ) // ) // andtree atree_y[Ny]; // (i:0..Ny-1: // (j:0..NyC: // bitval = (i & ( 1 << j )) >> j; // Get binary digit of integer i, column j // [bitval == 1 -> // atree_y[i].in[j] = addr_buf.out.d.d[j+NxC].t // []bitval == 0 -> // atree_y[i].in[j] = addr_buf.out.d.d[j+NxC].f // ] // ) // ) // // Connect stuff to vdd/vss // (i:0..Nx-1:atree_x[i].supply = supply) // //control // bool _en, _reset_BX,_reset_BXX[N]; // A_3C_RB_X4 inack_ctl(.c1=_en,.c2=in.v,.c3=out.v,.y=in.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss); // A_1C1P_X1 en_ctl(.c1=in.a,.p1=out.v,.y=_en,.vdd=supply.vdd,.vss=supply.vss); // BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss); // sigbuf reset_bufarray(.in=_reset_BX, .out=_reset_BXX); // //validity // bool _in_v; // vtree vc(.in=in.d,.out=_in_v,.supply=supply); // BUF_X4 in_v_buf(.a=_in_v, .y=in.v,.vdd=supply.vdd,.vss=supply.vss); // //function // bool _out_a_BX_t[N],_out_a_BX_f[N],_out_a_B,_en_X_t[N],_en_X_f[N]; // A_2C1N_RB_X4 f_buf_func[N]; // A_2C1N_RB_X4 t_buf_func[N]; // sigbuf en_buf_t(.in=_en, .out=_en_X_t, .supply=supply); // sigbuf en_buf_f(.in=_en, .out=_en_X_f, .supply=supply); // INV_X1 out_a_inv(.a=out.a,.y=_out_a_B); // sigbuf out_a_B_buf_f(.in=_out_a_B,.out=_out_a_BX_t); // sigbuf out_a_B_buf_t(.in=_out_a_B,.out=_out_a_BX_f); // // check if you can also do single var to array connect a=b[N] // // and remove them from the loop // (i:N: // f_buf_func[i].y=out.d.d[i].f; // t_buf_func[i].y=out.d.d[i].t; // f_buf_func[i].c1=_en_X_f[i]; // t_buf_func[i].c1=_en_X_t[i]; // f_buf_func[i].c2=_out_a_BX_f[i]; // t_buf_func[i].c2=_out_a_BX_t[i]; // f_buf_func[i].n1=in.d.d[i].f; // t_buf_func[i].n1=in.d.d[i].t; // f_buf_func[i].vdd=supply.vdd; // t_buf_func[i].vdd=supply.vdd; // f_buf_func[i].vss=supply.vss; // t_buf_func[i].vss=supply.vss; // t_buf_func[i].pr_B = _reset_BXX[i]; // t_buf_func[i].sr_B = _reset_BXX[i]; // f_buf_func[i].pr_B = _reset_BXX[i]; // f_buf_func[i].sr_B = _reset_BXX[i]; ) } } }