Please use EndPoint25Mar2022 as the stable branch.
Changes made to CREClass.m Here I've added an alternative calculation for the Relevance Boundary. CalcRBShannon is now part of the CREClass.m file. The TestCREClass has been updated to allow testing this new feature. NB: this is work in progress
This commit is contained in:
parent
e68267182d
commit
cbcee6ac27
60
CREClass.m
60
CREClass.m
@ -1,4 +1,7 @@
|
||||
classdef CREClass < handle
|
||||
% 23 and 24 Nov 2022 I added a new calculation for the RB based on
|
||||
% Shanon entropy given a threshold \lambda. I also think there is a
|
||||
% "mistake" in calculating the RB the classical way.
|
||||
properties
|
||||
Data; % the data set to get the CRE off
|
||||
nBin; %number of bins
|
||||
@ -111,7 +114,62 @@ classdef CREClass < handle
|
||||
obj.nBin=numel(obj.Edges)-1;
|
||||
end
|
||||
end
|
||||
function Calc(obj)
|
||||
function CalcRBShannon(obj)
|
||||
% 23Nov22 Here I will try to implement a (hopefully better)
|
||||
% definition of the relevance boundry. The basic idea is
|
||||
% assume a dataset X= {x_1 ... x_i} X
|
||||
% set a threshold \lambda NB \lambda \in of the data X
|
||||
%Shanon entropy for this \lambda will be:
|
||||
% H(\lamda)=p(x<\lambda)log(p(x<lambda))+p(x>=\lambda)log(p(x>=\lambda))
|
||||
% Now the expectation value for H will be :
|
||||
%E(H)=\int p(\lambda)*H(\lambda) d\lambda
|
||||
if isempty(obj.Data)
|
||||
warning('nothing to do');
|
||||
return;
|
||||
end
|
||||
if isempty(obj.Edges);obj.CalcEdges;end
|
||||
[CP,bin]=histcounts(obj.Data(:),transpose(obj.Edges),'Normalization','cdf');
|
||||
dl=transpose(diff(bin)./sum(diff(bin))); % will capture the case with non-equidistant bins as well as equidistant bins
|
||||
pdf_lambda=histcounts(obj.Data(:),transpose(obj.Edges),'Normalization','pdf');
|
||||
CP=transpose(CP);
|
||||
LogCP=log(CP);
|
||||
LogCP(~isfinite(LogCP))=0; % see comment below
|
||||
FC=1-CP;
|
||||
FC(FC<0)=0; % due to rounding errors, small negative numbers can arrise. These are theoretically not possible.
|
||||
LogFC=log(FC);
|
||||
LogFC(~isfinite(LogFC))=0;%the log of 0 is -inf. however in Fc.*logFc it should end up as 0. to avoid conflicts removing the -inf
|
||||
H=-1*(CP.*LogCP+FC.*LogFC); %Shannon Entropy when a theshold (lambda) is set to the lower bin edge
|
||||
w=(dl.*pdf_lambda);
|
||||
w=w./sum(w); % for one reason or the other, the sum is not always equal to 1.
|
||||
EH=w*H; %calculate expectation value for H
|
||||
RB_ind=[find(H>=EH,1,'first') find(H>=EH,1,'last')];
|
||||
obj.RB=obj.Edges(RB_ind)+dl(RB_ind)/2;
|
||||
obj.P_RB=FC(RB_ind);
|
||||
if obj.Monitor
|
||||
lambda=obj.Edges(1:end-1);
|
||||
scatter(w,H);xlabel('weight');ylabel('Shannon Entropy');snapnow
|
||||
plot(lambda,H);xlabel('lambda');ylabel('Shannon Entropy');
|
||||
line(lambda(RB_ind(:)),[EH;EH],'linestyle',':');snapnow
|
||||
histogram(obj.Data(:));snapnow
|
||||
disp('sum of weights')
|
||||
disp(sum(dl.*pdf_lambda))
|
||||
disp('EH')
|
||||
disp(EH)
|
||||
disp('boundry index');
|
||||
disp(RB_ind);
|
||||
disp('boundry lambda value');
|
||||
disp(obj.RB);
|
||||
disp('boundry p-values');
|
||||
disp(FC(RB_ind));
|
||||
disp('fraction inside interval');
|
||||
disp(abs(diff(FC(RB_ind))));
|
||||
end
|
||||
end
|
||||
function Calc(obj) %calculate the CRE as well as a on-tailed definition of the RB.
|
||||
% RR note: 23Nov22: I am not sure if I still like this RB
|
||||
% definition. I keep having a hard time defending it
|
||||
% theoretically. The code is retained, for now, however for backwards
|
||||
% compatibility.
|
||||
if isempty(obj.Data)
|
||||
warning('nothing to do');
|
||||
return;
|
||||
|
Loading…
x
Reference in New Issue
Block a user