Big modification in the way the histogram is calculated.
Now first the edges are calculated based on the two paramters: EqualSizeBinFlag and UseHistProxy. Once edges for bins are known (calculated) creating the cdf is the same for all cases.
This commit is contained in:
parent
3998755f40
commit
ce95974c7b
79
CREClass.m
79
CREClass.m
@ -4,12 +4,17 @@ classdef CREClass < handle
|
||||
nBin; %number of bins
|
||||
Monitor=true; %set to true to get intermediat results/figures
|
||||
UseHistProxy=true; % set this to get a proxy of the survival function using the hist function
|
||||
EqualSizeBinFlag=true; % set to true to get equal sized bins, set to false to get equi-content bins,
|
||||
% if set to false: each bin will contain (aproximately) an equal
|
||||
% number of pixel values.
|
||||
end
|
||||
properties %to be made read only
|
||||
properties (SetAccess = private) %read only
|
||||
CRE
|
||||
RB
|
||||
P_RB
|
||||
Edges
|
||||
end
|
||||
|
||||
properties (Hidden)
|
||||
WaitBarHandle;
|
||||
end
|
||||
@ -66,41 +71,39 @@ classdef CREClass < handle
|
||||
end
|
||||
%% core function(s)
|
||||
methods
|
||||
|
||||
function CalcEdges(obj)
|
||||
if isempty(obj.Data)
|
||||
warning('nothing to do');
|
||||
return;
|
||||
end
|
||||
if obj.UseHistProxy
|
||||
if isempty(obj.nBin)
|
||||
obj.nBin=floor(numel(obj.Data)./10);
|
||||
end
|
||||
if obj.EqualSizeBinFlag
|
||||
[~,obj.Edges]=histcounts(obj.Data(:),obj.nBin);
|
||||
else
|
||||
prc=linspace(0,100,obj.nBin+1); % define the edges of the bins as a precentile
|
||||
obj.Edges=prctile(obj.Data(:),prc); %find the edges of the bins
|
||||
end
|
||||
else
|
||||
if obj.UseHistProxy ; error('You cannot use EqualSizeBinFlag=true and UseHistProxy=false as a combination');end
|
||||
q=transpose(unique(sort(obj.Data(:))));
|
||||
dq=diff(q);
|
||||
obj.Edges=cat(2,q(1)-eps,q(1:end-1)+dq/2,q(end)+eps); %the eps is a "shortcut" to avoid value=edge cases. Note that eps will increase the size of the bin by a very small amount. Although this is a systemetic bias, its effect will be neglectable
|
||||
obj.nBin=numel(obj.Edges)-1;
|
||||
end
|
||||
end
|
||||
function Calc(obj)
|
||||
if isempty(obj.Data)
|
||||
warning('nothing to do');
|
||||
return;
|
||||
end
|
||||
if obj.UseHistProxy
|
||||
if isempty(obj.nBin)
|
||||
obj.nBin=floor(numel(obj.Data)./10);
|
||||
end
|
||||
%update part below to prefered matlab commands
|
||||
% [N,bin]=hist(obj.Data(:),obj.nBin);
|
||||
% N=transpose(N);
|
||||
% P=N./sum(N);
|
||||
% CP=cumsum(P);
|
||||
[CP,bin]=histcounts(obj.Data(:),obj.nBin,'Normalization','cdf');
|
||||
FC=1-transpose(CP);
|
||||
FC(FC<0)=0;
|
||||
dl=ones(size(FC))./numel(FC);
|
||||
else
|
||||
q=sort(unique(obj.Data(:)));
|
||||
FC=zeros(size(q));
|
||||
dl=zeros(size(q));
|
||||
for k=1:numel(q)
|
||||
FC(k)=sum(obj.Data(:)>=q(k));
|
||||
if k==1
|
||||
dl(k)=(q(k+1)-q(k))/2;
|
||||
elseif k==numel(q)
|
||||
dl(k)=(q(k)-q(k-1))/2;
|
||||
else
|
||||
dl(k)=(q(k+1)-q(k))/2+(q(k)-q(k-1))/2;
|
||||
end
|
||||
end
|
||||
FC=FC./numel(obj.Data);
|
||||
end
|
||||
if isempty(obj.Edges);obj.CalcEdges;end
|
||||
[CP,bin]=histcounts(obj.Data(:),transpose(obj.Edges),'Normalization','cdf');
|
||||
FC=1-transpose(CP);
|
||||
FC(FC<0)=0;
|
||||
dl=diff(bin)./sum(diff(bin)); % will capture the case with non-equidistant bins as well as equidistant bins
|
||||
LogFC=log(FC);
|
||||
LogFC(~isfinite(LogFC))=0;%the log of 0 is -inf. however in Fc.*logFc it should end up as 0. to avoid conflicts removing the -inf
|
||||
if any(isnan(FC));error('something went wrong');end %catch a posible error.
|
||||
@ -117,14 +120,14 @@ classdef CREClass < handle
|
||||
ind=find(exp(-CRE_Med_Inf)>=FC,1,'first');
|
||||
if obj.UseHistProxy
|
||||
obj.P_RB=FC(ind);
|
||||
obj.RB=bin(ind);
|
||||
if ind==numel(bin)%if RB is (beyond) the last bin,
|
||||
warning(sprintf('RB is hitting the upper bin value\n Maybe increase number of bins')) %#ok<*SPWRN>
|
||||
obj.RB=bin(ind);
|
||||
end
|
||||
obj.RB=(bin(ind)+bin(ind+1))/2; % set the RB to the center of the bin
|
||||
else
|
||||
% SortData=sort(obj.Data);
|
||||
% obj.RB=SortData(ind);
|
||||
% I think the two lines above are a bug. I should not use
|
||||
% "SortData but rather q itsself. Some numbers may be in
|
||||
% the data multiple times
|
||||
obj.RB=q(ind);
|
||||
SortData=unique(sort(obj.Data(:)));
|
||||
obj.RB=SortData(ind);
|
||||
obj.P_RB=FC(ind);
|
||||
end
|
||||
end
|
||||
|
@ -4,33 +4,54 @@
|
||||
%% set some constants
|
||||
A=randn(100);
|
||||
%% create instance of CRE class
|
||||
S=CREClass;
|
||||
%% check histogram vs "new" technique
|
||||
% NB I come to the conclusion that the new method is not always working.
|
||||
% Why?
|
||||
S.Data=A;% set gaussian data
|
||||
S.nBin=(numel(S.Data)); % set nbin to npoints; This is fine as we use the cummulative distribution and the formulas as defined in Zografos
|
||||
% use histogram
|
||||
S.UseHistProxy=true;
|
||||
S.Calc;
|
||||
S
|
||||
% Use my aproximation for the histogram
|
||||
% only do this if the number of data points is not too big.
|
||||
S.UseHistProxy=false;
|
||||
S.Calc;
|
||||
S
|
||||
S1=CREClass;
|
||||
%% Calculate by setting labda equal to each of the (unique) values in the data.
|
||||
S1.UseHistProxy=false;
|
||||
S1.EqualSizeBinFlag=false;
|
||||
S1.Data=A;% set gaussian data
|
||||
S1.Calc;
|
||||
|
||||
% use histogram aproximation with unequal bin sizes in the histogram
|
||||
S2=CREClass;
|
||||
S2.UseHistProxy=true;
|
||||
S2.EqualSizeBinFlag=false;
|
||||
S2.Data=A;% set gaussian data
|
||||
S2.nBin=numel(A); % set nbin to npoints; This is fine as we use the cummulative distribution and the formulas as defined in Zografos
|
||||
S2.Calc
|
||||
|
||||
% use histogram aproximation with equal bin sizes in the histogram
|
||||
S3=CREClass;
|
||||
S3.UseHistProxy=true;
|
||||
S3.EqualSizeBinFlag=false;
|
||||
S3.Data=A;% set gaussian data
|
||||
S3.nBin=numel(A); % set nbin to npoints; This is fine as we use the cummulative distribution and the formulas as defined in Zografos
|
||||
S3.Calc
|
||||
|
||||
%Check recalculation of edges
|
||||
S4=CREClass;
|
||||
S4.UseHistProxy=true;
|
||||
S4.EqualSizeBinFlag=true;
|
||||
S4.Data=A;% set gaussian data
|
||||
S4.nBin=numel(A); % set nbin to npoints; This is fine as we use the cummulative distribution and the formulas as defined in Zografos
|
||||
S4.Calc
|
||||
disp(S4)
|
||||
S4.nBin=numel(A)/10;
|
||||
S4.CalcEdges ; % force a recalculation of the edges
|
||||
S4.Calc;
|
||||
disp(S4)
|
||||
|
||||
return;
|
||||
%% Show effect of scaling or ofsett the data
|
||||
% Scale
|
||||
S.Data=100*A;
|
||||
S.UseHistProxy=true;
|
||||
S.Calc;
|
||||
S
|
||||
disp(S);
|
||||
% Offset
|
||||
S.Data=A+10;
|
||||
S.UseHistProxy=true;
|
||||
S.Calc;
|
||||
S
|
||||
disp(S);
|
||||
%%
|
||||
|
||||
%% Test CCRE class
|
||||
@ -39,21 +60,30 @@ figure(2);clf;
|
||||
figure(3);clf;hold on;
|
||||
A=randn(100);
|
||||
B=A;
|
||||
B(:)=A(randperm(numel(A)))
|
||||
for k=-1:0.1:1
|
||||
B(:)=A(randperm(numel(A)));
|
||||
w=-1:0.1:1;
|
||||
out(numel(w),1)=struct('w',[],'CRE',[],'CCRE',[],'R',[]);
|
||||
for k=1:numel(w)
|
||||
out(k).w=w(k);
|
||||
CS=CCREClass;
|
||||
CS.Data=1*(1-abs(k))*A+k*B;
|
||||
CS.EquidistantBinFlag=false;
|
||||
CS.Data=1*(1-abs(w(k)))*A+w(k)*B;
|
||||
CS.nBin=50;
|
||||
CS.DataRef=B;
|
||||
CS.nBinRef=500;
|
||||
CS.Calc;
|
||||
figure(1);
|
||||
plot(k,CS.CCRE,'o')
|
||||
plot(k,CS.CRE,'x');
|
||||
out(k).CRE=CS.CRE;
|
||||
out(k).CCRE=CS.CCRE;
|
||||
out(k).R=CS.CCRE./CS.CRE;
|
||||
figure(2);
|
||||
title(sprintf('w: %d',w(k)));
|
||||
scatter(CS.DataRef(:),CS.Data(:));
|
||||
figure(3);
|
||||
plot(k,CS.CCRE./CS.CRE,'d');
|
||||
snapnow
|
||||
end
|
||||
CS
|
||||
snapnow
|
||||
disp(CS);
|
||||
figure(1);
|
||||
clf;hold on;
|
||||
plot([out(:).w],[out(:).CCRE],'o');
|
||||
plot([out(:).w],[out(:).CRE],'x');
|
||||
figure(3);clf
|
||||
plot([out(:).w],[out(:).R],'d')
|
Loading…
x
Reference in New Issue
Block a user