{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "In this exercise, we'll do calculations on many numbers at once. Python provides the numpy library for that." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# !pip install numpy" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "\n", "%matplotlib notebook\n", "from matplotlib import pyplot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise:** Use `np.arange(..., ...)` to create a vector from `0` up to and including `5`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x = None\n", "\n", "print('x: ', x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise:** Extract `1` from all the numbers" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "y = None\n", "print('y: ', y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise:** Take the square root of all these numbers, either using `** 0.5` or `np.sqrt( ... )`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "y = None\n", "print('y: ', y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the square root of `-1` is not defined, and hence the result is *not a number* (nan).\n", "\n", "The cell below will make a plot of `x` and `y`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pyplot.plot(x, y)\n", "pyplot.xlabel('x')\n", "pyplot.ylabel('y')\n", "None" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You have learned to use `numpy` for so called vector operations, these are mathematical operations on many numbers as well. This field is called *linear algebra*, and is a usefull field on its own, in particular often used in artificial intelligence." ] } ], "metadata": { "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 2 }