2018-10-03 16:11:31 +02:00
|
|
|
import folium
|
|
|
|
from jupyter_progressbar import ProgressBar
|
2019-03-19 12:53:12 +01:00
|
|
|
from matplotlib import pyplot
|
2018-10-03 16:11:31 +02:00
|
|
|
from pygeoif.geometry import mapping
|
|
|
|
from shapely.geometry.geo import shape, box
|
|
|
|
|
|
|
|
from stimmen.cbs import data_file
|
|
|
|
from html import escape
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from stimmen.latitude_longitude import reverse_latitude_longitude
|
|
|
|
|
2019-03-19 12:53:12 +01:00
|
|
|
import tempfile
|
|
|
|
import time
|
|
|
|
from selenium import webdriver
|
|
|
|
from .folium_injections import *
|
|
|
|
from .folium_colorbar import *
|
|
|
|
|
2018-10-03 16:11:31 +02:00
|
|
|
|
|
|
|
def get_palette(n, no_black=True, no_white=True):
|
|
|
|
with open(data_file('data', 'glasbey', '{}_colors.txt'.format(n + no_black + no_white))) as f:
|
|
|
|
return [
|
|
|
|
'#%02x%02x%02x' % tuple(int(c) for c in line.replace('\n', '').split(','))
|
|
|
|
for line in f
|
|
|
|
if not no_black or line != '0,0,0\n'
|
|
|
|
if not no_white or line != '255,255,255\n'
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def colored_name(name, color):
|
2019-03-19 12:53:12 +01:00
|
|
|
return '<span class=\\"with-block\\" style=\\"color:{}; \\"><span class=\\"blackable; \\">{}</span></span>'.format(color, name)
|
2018-10-03 16:11:31 +02:00
|
|
|
|
|
|
|
|
|
|
|
def region_area_cdf(region_shape, resolution=10000):
|
|
|
|
xmin, ymin, xmax, ymax = region_shape.bounds
|
|
|
|
shape_area = region_shape.area
|
|
|
|
spaces = np.linspace(xmin, xmax, resolution + 1)
|
|
|
|
return np.array([
|
|
|
|
box(xmin, ymin, xmax_, ymax).intersection(region_shape).area / shape_area
|
|
|
|
for xmax_ in spaces
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
# Only slightly faster than region_area_cdf.
|
|
|
|
# def fast_sliced_shape_areas(region_shape, recursions=13):
|
|
|
|
# results = np.zeros(2 ** recursions)
|
|
|
|
# xmin, ymin, xmax, ymax = region_shape.bounds
|
|
|
|
# total = 0
|
|
|
|
#
|
|
|
|
# def f(shape_, xmin, ymin, xmax, ymax, recursions, results_):
|
|
|
|
# nonlocal total
|
|
|
|
# shape_ = box(xmin, ymin, xmax, ymax).intersection(shape_)
|
|
|
|
# if recursions == 0:
|
|
|
|
# assert results_.shape == (1,)
|
|
|
|
# results_[0] = shape_.area
|
|
|
|
# total += shape_.area
|
|
|
|
# else:
|
|
|
|
# xmiddle = xmin + (xmax - xmin) / 2
|
|
|
|
# middle_index = len(results_) // 2
|
|
|
|
# f(shape_, xmin, ymin, xmiddle, ymax, recursions - 1, results_[:middle_index])
|
|
|
|
# f(shape_, xmiddle, ymin, xmax, ymax, recursions - 1, results_[middle_index:])
|
|
|
|
#
|
|
|
|
# f(region_shape, xmin, ymin, xmax, ymax, recursions, results)
|
|
|
|
# return results / results.sum() * region_shape.area
|
|
|
|
|
|
|
|
|
|
|
|
def area_adjust_boundaries(region_shape, boundaries, region_cdf_cache=None, resolution=10000):
|
|
|
|
"""Adjust the boundaries from percentage of the width of a shape, to percentage of the area of a shape"""
|
|
|
|
if region_cdf_cache is None:
|
|
|
|
region_cdf_cache = region_area_cdf(region_shape, resolution)
|
|
|
|
elif not isinstance(region_cdf_cache, np.ndarray):
|
|
|
|
region_cdf_cache = np.array(region_cdf_cache)
|
|
|
|
return width_adjust_boundaries(
|
|
|
|
region_shape,
|
|
|
|
np.abs(region_cdf_cache[None, :] - boundaries[:, None]).argmin(axis=1) / resolution
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def width_adjust_boundaries(region_shape, boundaries):
|
|
|
|
xmin, _, xmax, _ = region_shape.bounds
|
|
|
|
return boundaries * (xmax - xmin) + xmin
|
|
|
|
|
|
|
|
|
|
|
|
def pronunciation_bars(
|
2019-03-19 12:53:12 +01:00
|
|
|
regions, dataframe,
|
|
|
|
region_name_property, region_name_column,
|
|
|
|
group_column='answer_text',
|
|
|
|
count_column=None,
|
|
|
|
cutoff_percentage=0.05,
|
|
|
|
normalize_area=True,
|
|
|
|
progress_bar=False,
|
|
|
|
area_adjust_resolution=10000,
|
|
|
|
simplify_shapes=None,
|
2018-10-03 16:11:31 +02:00
|
|
|
):
|
|
|
|
# all values of group_column that appear at least cutoff_percentage in one of the regions
|
|
|
|
relevant_groups = {
|
|
|
|
group
|
|
|
|
for region_name, region_rows in dataframe.groupby(region_name_column)
|
|
|
|
for group, aggregation in region_rows.groupby(
|
2019-03-19 12:53:12 +01:00
|
|
|
group_column).agg({group_column: len}).iterrows()
|
2018-10-03 16:11:31 +02:00
|
|
|
if aggregation[group_column] >= cutoff_percentage * len(region_rows)
|
|
|
|
}
|
|
|
|
|
|
|
|
group_to_color = dict(zip(relevant_groups, get_palette(len(relevant_groups))))
|
|
|
|
group_to_color['other'] = '#ccc'
|
|
|
|
|
|
|
|
n_other = len(dataframe) - sum(
|
|
|
|
sum(dataframe[group_column] == group_value)
|
|
|
|
for group_value in relevant_groups
|
|
|
|
)
|
|
|
|
|
|
|
|
# Each FeatureGroup represents all polygons (one for each region) of the relevant_groups
|
|
|
|
feature_groups = {
|
|
|
|
group_value: folium.FeatureGroup(
|
|
|
|
name=colored_name(
|
2019-03-19 12:53:12 +01:00
|
|
|
'{value} <span class=\\"amount\\">({amount})</span>'.format(value=escape(group_value), amount=amount),
|
2018-10-03 16:11:31 +02:00
|
|
|
color
|
|
|
|
),
|
|
|
|
overlay=True
|
|
|
|
)
|
|
|
|
for group_value, color in group_to_color.items()
|
|
|
|
for amount in [
|
|
|
|
sum(dataframe[group_column] == group_value)
|
|
|
|
if group_value != 'other' else
|
|
|
|
n_other
|
|
|
|
] # alias
|
2019-03-19 12:53:12 +01:00
|
|
|
if amount > 0
|
2018-10-03 16:11:31 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
progress_bar = ProgressBar if progress_bar else lambda x: x
|
|
|
|
|
|
|
|
# for each region, create the bar-polygons.
|
|
|
|
for feature in progress_bar(regions['features']):
|
|
|
|
region_name = feature['properties'][region_name_property]
|
|
|
|
region_rows = dataframe[dataframe[region_name_column] == region_name]
|
|
|
|
region_shape = shape(feature['geometry'])
|
2019-03-19 12:53:12 +01:00
|
|
|
if simplify_shapes:
|
|
|
|
region_shape = region_shape.simplify(simplify_shapes)
|
2018-10-03 16:11:31 +02:00
|
|
|
_, ymin, _, ymax = region_shape.bounds
|
|
|
|
|
|
|
|
group_values_occurrence = {
|
|
|
|
group_value: aggregation[group_column]
|
|
|
|
for group_value, aggregation in region_rows.groupby(group_column).agg({group_column: len}).iterrows()
|
|
|
|
if group_value in relevant_groups
|
|
|
|
}
|
|
|
|
group_values_occurrence['other'] = len(region_rows) - sum(group_values_occurrence.values())
|
|
|
|
group_values, group_occurrences = zip(*sorted(
|
|
|
|
group_values_occurrence.items(),
|
|
|
|
key=lambda x: (x[0] == 'other', -x[1])
|
|
|
|
))
|
|
|
|
|
2019-03-19 12:53:12 +01:00
|
|
|
group_percentages = np.array(group_occurrences) / max(1, len(region_rows))
|
|
|
|
group_boundaries = np.cumsum((0,) + group_occurrences) / max(1, len(region_rows))
|
2018-10-03 16:11:31 +02:00
|
|
|
if normalize_area:
|
|
|
|
if '__region_shape_cdf_cache' not in feature['properties']:
|
2019-03-19 12:53:12 +01:00
|
|
|
feature['properties']['__region_shape_cdf_cache'] = region_area_cdf(
|
|
|
|
region_shape, resolution=area_adjust_resolution).tolist()
|
2018-10-03 16:11:31 +02:00
|
|
|
group_boundaries = area_adjust_boundaries(
|
|
|
|
region_shape, group_boundaries,
|
2019-03-19 12:53:12 +01:00
|
|
|
region_cdf_cache=feature['properties']['__region_shape_cdf_cache'],
|
|
|
|
resolution=area_adjust_resolution
|
2018-10-03 16:11:31 +02:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
group_boundaries = width_adjust_boundaries(region_shape, group_boundaries)
|
|
|
|
|
|
|
|
for group_value, percentage, count, left_boundary, right_boundary in zip(
|
|
|
|
group_values,
|
|
|
|
group_percentages,
|
|
|
|
group_occurrences,
|
|
|
|
group_boundaries[:-1], group_boundaries[1:]
|
|
|
|
):
|
|
|
|
if count == 0 or left_boundary == right_boundary:
|
|
|
|
continue
|
|
|
|
|
|
|
|
bar_shape = region_shape.intersection(box(left_boundary, ymin, right_boundary, ymax))
|
2019-03-19 12:53:12 +01:00
|
|
|
if bar_shape.area == 0 or group_occurrences == 0:
|
2018-10-03 16:11:31 +02:00
|
|
|
continue
|
|
|
|
polygon = folium.Polygon(
|
|
|
|
reverse_latitude_longitude(mapping(bar_shape)['coordinates']),
|
|
|
|
fill_color=group_to_color[group_value],
|
|
|
|
fill_opacity=0.8,
|
|
|
|
color=None,
|
|
|
|
popup='{} ({}, {: 3d}%)'.format(group_value, count, int(round(100 * percentage)))
|
|
|
|
)
|
2019-03-19 12:53:12 +01:00
|
|
|
polygon._bar_shape = bar_shape
|
2018-10-03 16:11:31 +02:00
|
|
|
polygon.add_to(feature_groups[group_value])
|
|
|
|
|
|
|
|
return feature_groups
|
2019-03-19 12:53:12 +01:00
|
|
|
|
|
|
|
|
|
|
|
def shape_label(region_shape, label, font_size=12):
|
|
|
|
return folium.map.Marker(
|
|
|
|
[region_shape.centroid.y, region_shape.centroid.x],
|
|
|
|
icon=folium.DivIcon(
|
|
|
|
icon_size=(50 / 12 * font_size, 24 / 12 * font_size),
|
|
|
|
icon_anchor=(25 / 12 * font_size, font_size),
|
|
|
|
html=(
|
|
|
|
'<div class="percentage-label" style="font-size: {}pt; '
|
|
|
|
'background-color: rgba(255,255,255,0.8); border-radius: {}px; text-align: center;">'
|
|
|
|
'{}</div>').format(font_size, font_size, label),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def pronunciation_heatmaps(
|
|
|
|
regions, dataframe,
|
|
|
|
region_name_property, region_name_column,
|
|
|
|
group_column='answer_text',
|
|
|
|
cmap=pyplot.get_cmap('YlOrRd'),
|
|
|
|
label_font_size=12,
|
|
|
|
min_percentage=None, max_percentage=None,
|
|
|
|
show_labels=False
|
|
|
|
):
|
|
|
|
def hex_color(percentage):
|
|
|
|
return '#{:02x}{:02x}{:02x}'.format(*(
|
|
|
|
int(255 * c)
|
|
|
|
for c in cmap(percentage)[:3]
|
|
|
|
))
|
|
|
|
|
|
|
|
group_value_order, group_value_occurrence = zip(*sorted(
|
|
|
|
((group_value, len(rows)) for group_value, rows in dataframe.groupby(group_column)),
|
|
|
|
key=lambda x: -x[1]
|
|
|
|
))
|
|
|
|
|
|
|
|
occurrence_in_region = {
|
|
|
|
region_name: len(region_rows)
|
|
|
|
for region_name, region_rows in dataframe.groupby(region_name_column)
|
|
|
|
}
|
|
|
|
|
|
|
|
max_group_value_occurrence_in_region = [
|
|
|
|
max(
|
|
|
|
(region_rows[group_column] == group_value).sum() / occurrence_in_region[region_name]
|
|
|
|
for region_name, region_rows in dataframe.groupby(region_name_column)
|
|
|
|
)
|
|
|
|
for group_value in group_value_order
|
|
|
|
# for _ in [print(group_value)] # hack
|
|
|
|
]
|
|
|
|
|
|
|
|
feature_groups = [
|
|
|
|
folium.FeatureGroup(
|
|
|
|
name='{} ({})'.format(group_value, occurrence),
|
|
|
|
overlay=False
|
|
|
|
)
|
|
|
|
for group_value, occurrence in zip(group_value_order, group_value_occurrence)
|
|
|
|
]
|
|
|
|
for group in feature_groups:
|
|
|
|
folium.TileLayer(tiles='stamentoner').add_to(group)
|
|
|
|
|
|
|
|
for feature in regions['features']:
|
|
|
|
region_name = feature['properties'][region_name_property]
|
|
|
|
region_rows = dataframe[dataframe[region_name_column] == region_name]
|
|
|
|
region_shape = shape(feature['geometry'])
|
|
|
|
region_occurrence = occurrence_in_region.get(region_name, 1);
|
|
|
|
|
|
|
|
group_value_occurrence_in_region = [
|
|
|
|
(region_rows[group_column] == group_value).sum()
|
|
|
|
for group_value in group_value_order
|
|
|
|
]
|
|
|
|
|
|
|
|
for group_value, value_occurrence_in_region, value_occurrence, max_group_value_occurrence, feature_group in zip(
|
|
|
|
group_value_order,
|
|
|
|
group_value_occurrence_in_region,
|
|
|
|
group_value_occurrence,
|
|
|
|
max_group_value_occurrence_in_region,
|
|
|
|
feature_groups
|
|
|
|
):
|
|
|
|
percentage = value_occurrence_in_region / region_occurrence
|
|
|
|
if max_percentage is not None:
|
|
|
|
max_group_value_occurrence = max_percentage / 100
|
|
|
|
min_value = min_percentage / 100 if min_percentage is not None else 0
|
|
|
|
scale_value = percentage - min_value / (max_group_value_occurrence - min_value)
|
|
|
|
polygon = folium.Polygon(
|
|
|
|
reverse_latitude_longitude(feature['geometry']['coordinates']),
|
|
|
|
fill_color=hex_color(scale_value) if value_occurrence_in_region > 0 else '#888',
|
|
|
|
color='#000000',
|
|
|
|
fill_opacity=0.8,
|
|
|
|
popup='{} ({}, {: 3d}%)'.format( # ‰
|
|
|
|
region_name[:50], value_occurrence_in_region,
|
|
|
|
int(round(100 * percentage))
|
|
|
|
)
|
|
|
|
)
|
|
|
|
polygon.add_to(feature_group)
|
|
|
|
if show_labels and value_occurrence_in_region > 0:
|
|
|
|
shape_label(
|
|
|
|
region_shape,
|
|
|
|
'{:d}%'.format(int(round(100 * percentage))), # ‰
|
|
|
|
font_size=label_font_size
|
|
|
|
).add_to(feature_group)
|
|
|
|
|
|
|
|
return dict(zip(group_value_order, feature_groups))
|
|
|
|
|
|
|
|
|
|
|
|
def scatter_pronunciation_map(
|
|
|
|
dataframe,
|
|
|
|
latitude_column, longitude_column,
|
|
|
|
group_column,
|
|
|
|
split_at_groups=6
|
|
|
|
):
|
|
|
|
std = (0.0189, 0.0135)
|
|
|
|
|
|
|
|
group_values, group_value_occurrences = zip(*sorted(
|
|
|
|
((group_value, len(group_rows)) for group_value, group_rows in dataframe.groupby(group_column)),
|
|
|
|
key=lambda x: -x[1]
|
|
|
|
))
|
|
|
|
|
|
|
|
maps = (
|
|
|
|
[group_values, group_values[:split_at_groups], group_values[split_at_groups:]]
|
|
|
|
if len(group_values) > split_at_groups else [group_values]
|
|
|
|
)
|
|
|
|
result_names = ['all', 'most_occurring', 'least_occurring']
|
|
|
|
|
|
|
|
results = {name: [] for name in result_names}
|
|
|
|
|
|
|
|
for map, map_name in zip(maps, result_names):
|
|
|
|
colors = get_palette(len(map))
|
|
|
|
for group_value, group_color in zip(map, colors):
|
|
|
|
group_rows = dataframe[dataframe[group_column] == group_value]
|
|
|
|
|
|
|
|
group_name = '<span style=\\"color: {}; \\">{} ({})</span>'.format(
|
|
|
|
group_color, escape(group_value), len(group_rows))
|
|
|
|
|
|
|
|
results[map_name].append(folium.FeatureGroup(name=group_name))
|
|
|
|
|
|
|
|
for point in zip(group_rows[latitude_column], group_rows[longitude_column]):
|
|
|
|
point = tuple(p + s * np.random.randn() for p, s in zip(point, std))
|
|
|
|
folium.Circle(
|
|
|
|
point,
|
|
|
|
color=None,
|
|
|
|
fill_color=group_color,
|
|
|
|
radius=400 * min(1., 100 / len(group_rows)),
|
|
|
|
fill_opacity=1
|
|
|
|
).add_to(results[map_name][-1])
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
def bar_map_css(legend_fontsize='30pt', attribution_fontsize='14pt'):
|
|
|
|
return FoliumCSS("""
|
|
|
|
.leaflet-control-container .leaflet-control-layers-base {{
|
|
|
|
display: none;
|
|
|
|
}}
|
|
|
|
|
|
|
|
.leaflet-control-container .leaflet-control-layers-separator {{
|
|
|
|
display: none;
|
|
|
|
}}
|
|
|
|
|
|
|
|
.leaflet-control-container .leaflet-control-layers-overlays {{
|
|
|
|
display: flex
|
|
|
|
}}
|
|
|
|
|
|
|
|
.leaflet-control-container .leaflet-control-layers-overlays label:not(:last-child) {{
|
|
|
|
margin-right: 15px;
|
|
|
|
}}
|
|
|
|
|
|
|
|
.leaflet-control-container .leaflet-control-layers-overlays label span.with-block::before {{
|
|
|
|
content: '■ '; color: inherit;
|
|
|
|
}}
|
|
|
|
|
|
|
|
.leaflet-control-container .leaflet-control-layers-overlays label {{
|
|
|
|
margin-bottom: 0px; font-size: {legend_fontsize};
|
|
|
|
}}
|
|
|
|
|
|
|
|
.leaflet-control-container .leaflet-control-layers-overlays label input {{
|
|
|
|
display: none;
|
|
|
|
}}
|
|
|
|
|
|
|
|
.leaflet-control-attribution a {{
|
|
|
|
display: none;
|
|
|
|
}}
|
|
|
|
|
|
|
|
.leaflet-control-attribution.leaflet-control-attribution.leaflet-control-attribution.leaflet-control-attribution {{
|
|
|
|
background-color: white;
|
|
|
|
font-size: {attribution_fontsize};
|
|
|
|
}}
|
|
|
|
""".format(legend_fontsize=legend_fontsize, attribution_fontsize=attribution_fontsize))
|
|
|
|
|
|
|
|
|
|
|
|
def save_map(m, filename, resolution=(1600, 1400), headless=True):
|
|
|
|
f = tempfile.NamedTemporaryFile(delete=False, suffix='.html')
|
|
|
|
f.close()
|
|
|
|
m.save(f.name)
|
|
|
|
|
|
|
|
options = webdriver.ChromeOptions()
|
|
|
|
options.add_argument('--window-size={1},{0}'.format(*resolution))
|
|
|
|
if headless:
|
|
|
|
options.add_argument('--headless')
|
|
|
|
|
|
|
|
browser = webdriver.Chrome(options=options)
|
|
|
|
browser.get("file://" + f.name)
|
|
|
|
time.sleep(1)
|
|
|
|
|
|
|
|
browser.save_screenshot(filename)
|
|
|
|
browser.quit()
|
|
|
|
f.delete
|