cleaned up bar maps
This commit is contained in:
172
stimmen/folium.py
Normal file
172
stimmen/folium.py
Normal file
@@ -0,0 +1,172 @@
|
||||
import folium
|
||||
from jupyter_progressbar import ProgressBar
|
||||
from pygeoif.geometry import mapping
|
||||
from shapely.geometry.geo import shape, box
|
||||
|
||||
from stimmen.cbs import data_file
|
||||
from html import escape
|
||||
import numpy as np
|
||||
|
||||
from stimmen.latitude_longitude import reverse_latitude_longitude
|
||||
|
||||
|
||||
def get_palette(n, no_black=True, no_white=True):
|
||||
with open(data_file('data', 'glasbey', '{}_colors.txt'.format(n + no_black + no_white))) as f:
|
||||
return [
|
||||
'#%02x%02x%02x' % tuple(int(c) for c in line.replace('\n', '').split(','))
|
||||
for line in f
|
||||
if not no_black or line != '0,0,0\n'
|
||||
if not no_white or line != '255,255,255\n'
|
||||
]
|
||||
|
||||
|
||||
def colored_name(name, color):
|
||||
return '<span style=\\"color:{}; \\">{}</span>'.format(color, name)
|
||||
|
||||
|
||||
def region_area_cdf(region_shape, resolution=10000):
|
||||
xmin, ymin, xmax, ymax = region_shape.bounds
|
||||
shape_area = region_shape.area
|
||||
spaces = np.linspace(xmin, xmax, resolution + 1)
|
||||
return np.array([
|
||||
box(xmin, ymin, xmax_, ymax).intersection(region_shape).area / shape_area
|
||||
for xmax_ in spaces
|
||||
])
|
||||
|
||||
|
||||
# Only slightly faster than region_area_cdf.
|
||||
# def fast_sliced_shape_areas(region_shape, recursions=13):
|
||||
# results = np.zeros(2 ** recursions)
|
||||
# xmin, ymin, xmax, ymax = region_shape.bounds
|
||||
# total = 0
|
||||
#
|
||||
# def f(shape_, xmin, ymin, xmax, ymax, recursions, results_):
|
||||
# nonlocal total
|
||||
# shape_ = box(xmin, ymin, xmax, ymax).intersection(shape_)
|
||||
# if recursions == 0:
|
||||
# assert results_.shape == (1,)
|
||||
# results_[0] = shape_.area
|
||||
# total += shape_.area
|
||||
# else:
|
||||
# xmiddle = xmin + (xmax - xmin) / 2
|
||||
# middle_index = len(results_) // 2
|
||||
# f(shape_, xmin, ymin, xmiddle, ymax, recursions - 1, results_[:middle_index])
|
||||
# f(shape_, xmiddle, ymin, xmax, ymax, recursions - 1, results_[middle_index:])
|
||||
#
|
||||
# f(region_shape, xmin, ymin, xmax, ymax, recursions, results)
|
||||
# return results / results.sum() * region_shape.area
|
||||
|
||||
|
||||
def area_adjust_boundaries(region_shape, boundaries, region_cdf_cache=None, resolution=10000):
|
||||
"""Adjust the boundaries from percentage of the width of a shape, to percentage of the area of a shape"""
|
||||
if region_cdf_cache is None:
|
||||
region_cdf_cache = region_area_cdf(region_shape, resolution)
|
||||
elif not isinstance(region_cdf_cache, np.ndarray):
|
||||
region_cdf_cache = np.array(region_cdf_cache)
|
||||
return width_adjust_boundaries(
|
||||
region_shape,
|
||||
np.abs(region_cdf_cache[None, :] - boundaries[:, None]).argmin(axis=1) / resolution
|
||||
)
|
||||
|
||||
|
||||
def width_adjust_boundaries(region_shape, boundaries):
|
||||
xmin, _, xmax, _ = region_shape.bounds
|
||||
return boundaries * (xmax - xmin) + xmin
|
||||
|
||||
|
||||
def pronunciation_bars(
|
||||
regions, dataframe,
|
||||
region_name_property, region_name_column,
|
||||
group_column='answer_text',
|
||||
cutoff_percentage=0.05,
|
||||
normalize_area=True,
|
||||
progress_bar=False,
|
||||
):
|
||||
# all values of group_column that appear at least cutoff_percentage in one of the regions
|
||||
relevant_groups = {
|
||||
group
|
||||
for region_name, region_rows in dataframe.groupby(region_name_column)
|
||||
for group, aggregation in region_rows.groupby(
|
||||
group_column).agg({group_column: len}).iterrows()
|
||||
if aggregation[group_column] >= cutoff_percentage * len(region_rows)
|
||||
}
|
||||
|
||||
group_to_color = dict(zip(relevant_groups, get_palette(len(relevant_groups))))
|
||||
group_to_color['other'] = '#ccc'
|
||||
|
||||
n_other = len(dataframe) - sum(
|
||||
sum(dataframe[group_column] == group_value)
|
||||
for group_value in relevant_groups
|
||||
)
|
||||
|
||||
# Each FeatureGroup represents all polygons (one for each region) of the relevant_groups
|
||||
feature_groups = {
|
||||
group_value: folium.FeatureGroup(
|
||||
name=colored_name(
|
||||
'{value} ({amount})'.format(value=escape(group_value), amount=amount),
|
||||
color
|
||||
),
|
||||
overlay=True
|
||||
)
|
||||
for group_value, color in group_to_color.items()
|
||||
for amount in [
|
||||
sum(dataframe[group_column] == group_value)
|
||||
if group_value != 'other' else
|
||||
n_other
|
||||
] # alias
|
||||
}
|
||||
|
||||
progress_bar = ProgressBar if progress_bar else lambda x: x
|
||||
|
||||
# for each region, create the bar-polygons.
|
||||
for feature in progress_bar(regions['features']):
|
||||
region_name = feature['properties'][region_name_property]
|
||||
region_rows = dataframe[dataframe[region_name_column] == region_name]
|
||||
region_shape = shape(feature['geometry'])
|
||||
_, ymin, _, ymax = region_shape.bounds
|
||||
|
||||
group_values_occurrence = {
|
||||
group_value: aggregation[group_column]
|
||||
for group_value, aggregation in region_rows.groupby(group_column).agg({group_column: len}).iterrows()
|
||||
if group_value in relevant_groups
|
||||
}
|
||||
group_values_occurrence['other'] = len(region_rows) - sum(group_values_occurrence.values())
|
||||
group_values, group_occurrences = zip(*sorted(
|
||||
group_values_occurrence.items(),
|
||||
key=lambda x: (x[0] == 'other', -x[1])
|
||||
))
|
||||
|
||||
group_percentages = np.array(group_occurrences) / len(region_rows)
|
||||
group_boundaries = np.cumsum((0,) + group_occurrences) / len(region_rows)
|
||||
if normalize_area:
|
||||
if '__region_shape_cdf_cache' not in feature['properties']:
|
||||
feature['properties']['__region_shape_cdf_cache'] = region_area_cdf(region_shape).tolist()
|
||||
group_boundaries = area_adjust_boundaries(
|
||||
region_shape, group_boundaries,
|
||||
region_cdf_cache=feature['properties']['__region_shape_cdf_cache']
|
||||
)
|
||||
else:
|
||||
group_boundaries = width_adjust_boundaries(region_shape, group_boundaries)
|
||||
|
||||
for group_value, percentage, count, left_boundary, right_boundary in zip(
|
||||
group_values,
|
||||
group_percentages,
|
||||
group_occurrences,
|
||||
group_boundaries[:-1], group_boundaries[1:]
|
||||
):
|
||||
if count == 0 or left_boundary == right_boundary:
|
||||
continue
|
||||
|
||||
bar_shape = region_shape.intersection(box(left_boundary, ymin, right_boundary, ymax))
|
||||
if bar_shape.area == 0:
|
||||
continue
|
||||
polygon = folium.Polygon(
|
||||
reverse_latitude_longitude(mapping(bar_shape)['coordinates']),
|
||||
fill_color=group_to_color[group_value],
|
||||
fill_opacity=0.8,
|
||||
color=None,
|
||||
popup='{} ({}, {: 3d}%)'.format(group_value, count, int(round(100 * percentage)))
|
||||
)
|
||||
polygon.add_to(feature_groups[group_value])
|
||||
|
||||
return feature_groups
|
@@ -1,5 +1,6 @@
|
||||
from pygeoif.geometry import mapping
|
||||
from shapely.geometry import shape
|
||||
from shapely.geometry.point import Point
|
||||
|
||||
|
||||
def merge_features(geojson, condition, aggregate={}):
|
||||
@@ -40,4 +41,40 @@ def merge_features(geojson, condition, aggregate={}):
|
||||
'geometry': mapping(union),
|
||||
'properties': properties
|
||||
})
|
||||
return geojson
|
||||
return geojson
|
||||
|
||||
|
||||
def inject_geojson_regions_into_dataframe(
|
||||
geojson, dataframe,
|
||||
latitude_column='latitude', longitude_column='longitude',
|
||||
region_name_property='name',
|
||||
region_name_column='region'
|
||||
):
|
||||
"""adds a region_name_column column to the dataframe with the region name as specified
|
||||
in the region_name_property of the geojson, by checking which geojson feature geometrically
|
||||
contains the longitude and latitude of the dataframe's row. This allows for faster cross
|
||||
reference between the geojson and the dataframe compared to always checking shape-point
|
||||
containment when cross referencing. Operates in place."""
|
||||
shapes = {
|
||||
feature['properties'][region_name_property]: shape(feature['geometry'])
|
||||
for feature in geojson['features']
|
||||
}
|
||||
|
||||
def get_region_name(point):
|
||||
nonlocal shapes
|
||||
for region_name, region_shape in shapes.items():
|
||||
if region_shape.contains(point):
|
||||
return region_name
|
||||
|
||||
point_to_region_name = {
|
||||
(latitude, longitude): get_region_name(point)
|
||||
for latitude, longitude in set(zip(dataframe[latitude_column], dataframe[longitude_column]))
|
||||
for point in [Point(longitude, latitude)] # alias
|
||||
}
|
||||
|
||||
dataframe[region_name_column] = [
|
||||
point_to_region_name[(latitude, longitude)]
|
||||
for latitude, longitude in zip(dataframe[latitude_column], dataframe[longitude_column])
|
||||
]
|
||||
return dataframe
|
||||
|
||||
|
Reference in New Issue
Block a user