{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Geographical pronunciation statistics" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas\n", "import MySQLdb\n", "import numpy\n", "import json\n", "\n", "db = MySQLdb.connect(user='root', passwd='Nmmxhjgt1@', db='stimmen', charset='utf8')\n", "\n", "%matplotlib notebook\n", "from matplotlib import pyplot\n", "import folium\n", "from IPython.display import display\n", "from shapely.geometry import Polygon, MultiPolygon, shape, Point\n", "from jupyter_progressbar import ProgressBar\n", "from collections import defaultdict\n", "from ipy_table import make_table\n", "from html import escape\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib.colors import LogNorm\n", "from sklearn import mixture\n", "from skimage.measure import find_contours\n", "from collections import Counter\n", "from random import shuffle" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Borders of Frysian municipalities\n", "\n", "with open('Friesland_AL8.GeoJson') as f:\n", " gemeentes = json.load(f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "shapes = [shape(feature['geometry']) for feature in gemeentes['features']]\n", "gemeente_names = [feature['properties']['name'] for feature in gemeentes['features']]\n", "\n", "def get_gemeente(point):\n", " for i, shape in enumerate(shapes):\n", " if shape.contains(point):\n", " return i\n", " return -1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Answers to how participants state a word should be pronounces.\n", "\n", "answers = pandas.read_sql('''\n", "SELECT prediction_quiz_id, user_lat, user_lng, question_text, answer_text\n", "FROM core_surveyresult as survey\n", "INNER JOIN core_predictionquizresult as result ON survey.id = result.survey_result_id\n", "INNER JOIN core_predictionquizresultquestionanswer as answer\n", " ON result.id = answer.prediction_quiz_id\n", "''', db)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Takes approximately 2 minutes\n", "\n", "gemeente_map = {\n", " (lng, lat): get_gemeente(Point(lng, lat))\n", " for lng, lat in set(zip(answers['user_lng'], answers['user_lat']))\n", "}\n", "\n", "answers['gemeente'] = [\n", " gemeente_map[(lng, lat)]\n", " for lat, lng in zip(answers['user_lat'], answers['user_lng'])\n", "]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Mapping pronunciations\n", "\n", "The idea is to plot each pronunciation as a point of a different color, now only seems to show participation density.\n", "\n", "Slow, so started with the first question." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "# cmap = pyplot.get_cmap('gist_rainbow')\n", "\n", "# std = (1.89, 1.35)\n", "\n", "# for _, (question, rows) in zip(range(3), answers.groupby('question_text')):\n", "# plt.figure()\n", "# n_answers = len(rows.groupby('answer_text').count())\n", "# colors = cmap(range(256))[::256 // n_answers]\n", "# for (answer, rows_), color in zip(rows.groupby('answer_text'), colors):\n", "# if len(rows_) < 100:\n", "# continue\n", "# color = '#%02x%02x%02x' % tuple(int(c*255) for c in color[:3])\n", "# X = rows_[['user_lat', 'user_lng']].as_matrix()\n", "\n", "# clf = mixture.GaussianMixture(n_components=5, covariance_type='full')\n", "# clf.fit(X)\n", "# xlim = numpy.percentile(X[:, 0], [1, 99.5])\n", "# ylim = numpy.percentile(X[:, 1], [1, 99.5])\n", "# xlim = [2*xlim[0] - xlim[1], 2*xlim[1] - xlim[0]]\n", "# ylim = [2*ylim[0] - ylim[1], 2*ylim[1] - ylim[0]]\n", " \n", "# x = np.linspace(*xlim, 1000)\n", "# y = np.linspace(*ylim, 1000)\n", "# xx, yy = np.meshgrid(x, y)\n", "# xxyy = np.array([xx.ravel(), yy.ravel()]).T\n", "# z = np.exp(clf.score_samples(xxyy))\n", "# z = z.reshape(xx.shape)\n", " \n", "# z_sorted = sorted(z.ravel(), reverse=True)\n", "# z_sorted_cumsum = np.cumsum(z_sorted)\n", "# split = np.where(z_sorted_cumsum > (z_sorted_cumsum[-1] * 0.5))[0][0]\n", "# threshold = z_sorted[split]\n", "# threshold\n", "\n", "# # p = list(range(0, 100, 5))\n", "\n", "# p = [80]\n", "# plt.contour(xx, yy, z, levels=[threshold], colors=[color])\n", "# plt.plot(X[:, 0], X[:, 1], '.', c=color)\n", "# plt.xlim(*xlim)\n", "# plt.ylim(*ylim)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "zero_latlng_questions = {\n", " q\n", " for q, row in answers.groupby('question_text').agg('std').iterrows()\n", " if row['user_lat'] == 0 and row['user_lng'] == 0\n", "}\n", "answers_filtered = answers[answers['question_text'].map(lambda x: x not in zero_latlng_questions)]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "answers_filtered['question_text_url'] = answers_filtered['question_text'].map(\n", " lambda x: x.replace('\"', '').replace('*', ''))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def get_palette(n, no_black=True, no_white=True):\n", " with open('glasbey/{}_colors.txt'.format(n + no_black + no_white)) as f:\n", " return [\n", " '#%02x%02x%02x' % tuple(int(c) for c in line.replace('\\n', '').split(','))\n", " for line in f\n", " if not no_black or line != '0,0,0\\n'\n", " if not no_white or line != '255,255,255\\n'\n", " ]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "options = [x[1] for x in sorted([\n", " (row['user_lng'], answer_text)\n", " for answer_text, row in rows.groupby('answer_text').agg({'user_lng': 'count'}).iterrows()\n", "], reverse=True)]\n", "\n", "groups = [options[:len(options) // 2], options[len(options) // 2:]]\n", "groups" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "80000 / 350" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import glob\n", "with open('index.html', 'w') as f:\n", " f.write('' + \n", " '
\\n'.join(\n", " '\\t{}'.format(fn, fn[:-4].replace('_', ' '))\n", " for fn in sorted(\n", " glob.glob('*_all.html') +\n", " glob.glob('*_larger.html') +\n", " glob.glob('*_smaller.html')\n", " )\n", " ) + \"\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "# cmap = pyplot.get_cmap('gist_rainbow')\n", "# colors = pyplot.get_cmap('tab20')\n", "# colors = ['#e6194b', '#3cb44b', '#ffe119', '#0082c8', '#f58231', '#911eb4', '#46f0f0', '#f032e6', '#d2f53c', '#fabebe', '#008080', '#e6beff', '#aa6e28', '#fffac8', '#800000', '#aaffc3', '#808000', '#ffd8b1', '#000080', '#808080']\n", "\n", "std = (1.89, 1.35)\n", "\n", "for question, rows in answers_filtered.groupby('question_text_url'):\n", "# question = rows['question_text_url'][0]\n", " n_answers = len(rows.groupby('answer_text').count())\n", " \n", " \n", " options = [x[1] for x in sorted([\n", " (row['user_lng'], answer_text)\n", " for answer_text, row in rows.groupby('answer_text').agg({'user_lng': 'count'}).iterrows()\n", " ], reverse=True)]\n", " groups = [options]\n", " if n_answers > 6:\n", " groups.extend([options[:6], options[6:]])\n", " \n", " for group, group_name in zip(groups, ['all', 'larger', 'smaller']):\n", " m = folium.Map((rows['user_lat'].median(), rows['user_lng'].median()), tiles='stamentoner', zoom_start=9)\n", " # colors = cmap(range(256))[::256 // n_answers]\n", " colors = get_palette(len(group))\n", " for answer, color in zip(group, colors):\n", " rows_ = rows[rows['answer_text'] == answer]\n", " # color = '#%02x%02x%02x' % tuple(int(c*255) for c in color[:3])\n", " name = '{} ({})'.format(color, escape(answer), len(rows_))\n", "\n", " group = folium.FeatureGroup(name=name)\n", " colormap[name] = color\n", "\n", " for point in zip(rows_['user_lat'], rows_['user_lng']):\n", " point = tuple(p + 0.01 * s * numpy.random.randn() for p, s in zip(point, std))\n", " folium.Circle(\n", " point, color=None, fill_color=color,\n", " radius=400*min(1, 100 / len(rows_)), fill_opacity=1 #1 - 0.5 * len(rows_) / len(rows)\n", " ).add_to(group)\n", " group.add_to(m)\n", " folium.map.LayerControl('topright', collapsed=False).add_to(m)\n", " \n", " print(group_name, question)\n", " if group_name == 'larger':\n", " display(m)\n", " m.save('{}_{}.html'.format(question, group_name))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }