novoapi_functions.py is adjusted to use convert_phoneset.py.
This commit is contained in:
@ -16,50 +16,53 @@ import defaultfiles as default
|
||||
sys.path.append(default.toolbox_dir)
|
||||
import file_handling as fh
|
||||
from htk import pyhtk
|
||||
#from scripts import run_command
|
||||
|
||||
|
||||
## ======================= user define =======================
|
||||
# procedure
|
||||
combine_all = 1
|
||||
|
||||
make_lexicon = 0
|
||||
make_label = 0 # it takes roughly 4800 sec on Surface pro 2.
|
||||
make_mlf = 0
|
||||
extract_features = 0
|
||||
flat_start = 0
|
||||
train_monophone_without_sp = 0
|
||||
add_sp = 0
|
||||
train_monophone_with_re_aligned_mlf = 0
|
||||
flat_start = 1
|
||||
train_monophone_without_sp = 1
|
||||
add_sp = 1
|
||||
train_monophone_with_re_aligned_mlf = 1
|
||||
increase_mixture = 1
|
||||
train_triphone = 0
|
||||
train_triphone_tied = 1
|
||||
train_triphone_tied = 0
|
||||
|
||||
|
||||
# pre-defined values.
|
||||
dataset_list = ['devel', 'test', 'train']
|
||||
feature_size = 39
|
||||
feature_size = 30
|
||||
improvement_threshold = 0.3
|
||||
|
||||
hmmdefs_name = 'hmmdefs'
|
||||
proto_name = 'proto'
|
||||
|
||||
lexicon_asr = os.path.join(default.fame_dir, 'lexicon', 'lex.asr')
|
||||
lexicon_oov = os.path.join(default.fame_dir, 'lexicon', 'lex.oov')
|
||||
|
||||
config_dir = os.path.join(default.htk_dir, 'config')
|
||||
phonelist_full_txt = os.path.join(config_dir, 'phonelist_full.txt')
|
||||
tree_hed = os.path.join(config_dir, 'tree.hed')
|
||||
quest_hed = os.path.join(config_dir, 'quests.hed')
|
||||
tree_hed = os.path.join(config_dir, 'tree.hed')
|
||||
quests_hed = os.path.join(config_dir, 'quests.hed')
|
||||
|
||||
model_dir = os.path.join(default.htk_dir, 'model')
|
||||
model_mono0_dir = os.path.join(model_dir, 'mono0')
|
||||
model_mono1_dir = os.path.join(model_dir, 'mono1')
|
||||
model_mono1sp_dir = os.path.join(model_dir, 'mono1sp')
|
||||
model_mono1sp2_dir = os.path.join(model_dir, 'mono1sp2')
|
||||
model_tri1_dir = os.path.join(model_dir, 'tri1')
|
||||
model_tri1_dir = os.path.join(model_dir, 'tri1')
|
||||
model_tri1tied_dir = os.path.join(model_dir, 'tri1tied')
|
||||
|
||||
# directories / files to be made.
|
||||
lexicon_dir = os.path.join(default.htk_dir, 'lexicon')
|
||||
lexicon_htk_asr = os.path.join(lexicon_dir, 'lex.htk_asr')
|
||||
lexicon_htk_oov = os.path.join(lexicon_dir, 'lex.htk_oov')
|
||||
lexicon_htk = os.path.join(lexicon_dir, 'lex.htk')
|
||||
lexicon_htk_with_sp = os.path.join(lexicon_dir, 'lex_with_sp.htk')
|
||||
lexicon_htk_triphone = os.path.join(lexicon_dir, 'lex_triphone.htk')
|
||||
|
||||
feature_dir = os.path.join(default.htk_dir, 'mfc')
|
||||
@ -71,10 +74,20 @@ fh.make_new_directory(label_dir, existing_dir='leave')
|
||||
|
||||
|
||||
## training
|
||||
hcompv_scp_train = os.path.join(tmp_dir, 'train.scp')
|
||||
mlf_file_train = os.path.join(label_dir, 'train_phone.mlf')
|
||||
mlf_file_train_with_sp = os.path.join(label_dir, 'train_phone_with_sp.mlf')
|
||||
mlf_file_train_aligned = os.path.join(label_dir, 'train_phone_aligned.mlf')
|
||||
if combine_all:
|
||||
hcompv_scp_train = os.path.join(tmp_dir, 'all.scp')
|
||||
mlf_file_train = os.path.join(label_dir, 'all_phone.mlf')
|
||||
mlf_file_train_word = os.path.join(label_dir, 'all_word.mlf')
|
||||
mlf_file_train_with_sp = os.path.join(label_dir, 'all_phone_with_sp.mlf')
|
||||
mlf_file_train_aligned = os.path.join(label_dir, 'all_phone_aligned.mlf')
|
||||
triphone_mlf = os.path.join(label_dir, 'all_triphone.mlf')
|
||||
else:
|
||||
hcompv_scp_train = os.path.join(tmp_dir, 'train.scp')
|
||||
mlf_file_train = os.path.join(label_dir, 'train_phone.mlf')
|
||||
mlf_file_train_word = os.path.join(label_dir, 'train_word.mlf')
|
||||
mlf_file_train_with_sp = os.path.join(label_dir, 'train_phone_with_sp.mlf')
|
||||
mlf_file_train_aligned = os.path.join(label_dir, 'train_phone_aligned.mlf')
|
||||
triphone_mlf = os.path.join(label_dir, 'train_triphone.mlf')
|
||||
hcompv_scp_train_updated = hcompv_scp_train.replace('.scp', '_updated.scp')
|
||||
|
||||
## testing
|
||||
@ -104,19 +117,18 @@ if make_lexicon:
|
||||
print('>>> fixing the lexicon...')
|
||||
fame_functions.fix_lexicon(lexicon_htk)
|
||||
|
||||
## add sp to the end of each line.
|
||||
#print('>>> adding sp...')
|
||||
#with open(lexicon_htk) as f:
|
||||
# lines = f.read().split('\n')
|
||||
#lines = [line + ' sp' for line in lines]
|
||||
#with open(lexicon_htk_with_sp, 'wb') as f:
|
||||
# f.write(bytes('\n'.join(lines), 'ascii'))
|
||||
## adding sp to the lexicon for HTK.
|
||||
print('>>> adding sp to the lexicon...')
|
||||
with open(lexicon_htk) as f:
|
||||
lines = f.read().split('\n')
|
||||
with open(lexicon_htk_with_sp, 'wb') as f:
|
||||
f.write(bytes(' sp\n'.join(lines), 'ascii'))
|
||||
|
||||
print("elapsed time: {}".format(time.time() - timer_start))
|
||||
|
||||
|
||||
## intialize the instance for HTK.
|
||||
chtk = pyhtk.HTK(config_dir, fame_asr.phoneset_htk, lexicon_htk, feature_size)
|
||||
chtk = pyhtk.HTK(config_dir, fame_asr.phoneset_htk, lexicon_htk_with_sp, feature_size)
|
||||
|
||||
|
||||
## ======================= make label files =======================
|
||||
@ -152,7 +164,7 @@ if make_label:
|
||||
shutil.move(dictionary_file, os.path.join(label_dir_, filename + '.dic'))
|
||||
|
||||
label_file = os.path.join(label_dir_, filename + '.lab')
|
||||
chtk.create_label_file(sentence_htk, label_file)
|
||||
chtk.make_label_file(sentence_htk, label_file)
|
||||
else:
|
||||
os.remove(dictionary_file)
|
||||
|
||||
@ -174,7 +186,6 @@ if make_mlf:
|
||||
os.remove(empty_dic_file)
|
||||
|
||||
for dataset in dataset_list:
|
||||
#wav_dir_ = os.path.join(default.fame_dir, 'fame', 'wav', dataset)
|
||||
feature_dir_ = os.path.join(feature_dir, dataset)
|
||||
label_dir_ = os.path.join(label_dir, dataset)
|
||||
mlf_word = os.path.join(label_dir, dataset + '_word.mlf')
|
||||
@ -183,11 +194,11 @@ if make_mlf:
|
||||
|
||||
print(">>> generating a word level mlf file for {}...".format(dataset))
|
||||
chtk.label2mlf(label_dir_, mlf_word)
|
||||
|
||||
print(">>> generating a phone level mlf file for {}...".format(dataset))
|
||||
chtk.mlf_word2phone(mlf_phone, mlf_word, with_sp=False)
|
||||
chtk.mlf_word2phone(mlf_phone_with_sp, mlf_word, with_sp=True)
|
||||
|
||||
|
||||
print("elapsed time: {}".format(time.time() - timer_start))
|
||||
|
||||
|
||||
@ -197,7 +208,7 @@ if extract_features:
|
||||
timer_start = time.time()
|
||||
print('==== extract features on dataset {} ===='.format(dataset))
|
||||
|
||||
wav_dir_ = os.path.join(default.fame_dir, 'fame', 'wav', dataset)
|
||||
wav_dir_ = os.path.join(default.fame_dir, 'fame', 'wav', dataset)
|
||||
label_dir_ = os.path.join(label_dir, dataset)
|
||||
feature_dir_ = os.path.join(feature_dir, dataset)
|
||||
fh.make_new_directory(feature_dir_, existing_dir='delete')
|
||||
@ -217,8 +228,8 @@ if extract_features:
|
||||
+ os.path.join(feature_dir_, os.path.basename(lab_file).replace('.lab', '.mfc'))
|
||||
for lab_file in lab_list]
|
||||
|
||||
if os.path.exists(empty_mfc_file):
|
||||
os.remove(empty_mfc_file)
|
||||
#if os.path.exists(empty_mfc_file):
|
||||
# os.remove(empty_mfc_file)
|
||||
with open(hcopy_scp.name, 'wb') as f:
|
||||
f.write(bytes('\n'.join(feature_list), 'ascii'))
|
||||
|
||||
@ -235,9 +246,64 @@ if extract_features:
|
||||
with open(hcompv_scp, 'wb') as f:
|
||||
f.write(bytes('\n'.join(mfc_list) + '\n', 'ascii'))
|
||||
|
||||
print(">>> extracting features on stimmen...")
|
||||
chtk.wav2mfc(os.path.join(htk_stimmen_dir, 'hcopy.scp'))
|
||||
|
||||
print("elapsed time: {}".format(time.time() - timer_start))
|
||||
|
||||
|
||||
## ======================= flat start monophones =======================
|
||||
if combine_all:
|
||||
# script files.
|
||||
fh.concatenate(
|
||||
os.path.join(tmp_dir, 'devel.scp'),
|
||||
os.path.join(tmp_dir, 'test.scp'),
|
||||
hcompv_scp_train
|
||||
)
|
||||
fh.concatenate(
|
||||
hcompv_scp_train,
|
||||
os.path.join(tmp_dir, 'train.scp'),
|
||||
hcompv_scp_train
|
||||
)
|
||||
|
||||
# phone level mlfs.
|
||||
fh.concatenate(
|
||||
os.path.join(label_dir, 'devel_phone.mlf'),
|
||||
os.path.join(label_dir, 'test_phone.mlf'),
|
||||
mlf_file_train
|
||||
)
|
||||
fh.concatenate(
|
||||
mlf_file_train,
|
||||
os.path.join(label_dir, 'train_phone.mlf'),
|
||||
mlf_file_train
|
||||
)
|
||||
|
||||
# phone level mlfs with sp.
|
||||
fh.concatenate(
|
||||
os.path.join(label_dir, 'devel_phone_with_sp.mlf'),
|
||||
os.path.join(label_dir, 'test_phone_with_sp.mlf'),
|
||||
mlf_file_train_with_sp
|
||||
)
|
||||
fh.concatenate(
|
||||
mlf_file_train_with_sp,
|
||||
os.path.join(label_dir, 'train_phone_with_sp.mlf'),
|
||||
mlf_file_train_with_sp
|
||||
)
|
||||
|
||||
|
||||
# word level mlfs.
|
||||
fh.concatenate(
|
||||
os.path.join(label_dir, 'devel_word.mlf'),
|
||||
os.path.join(label_dir, 'test_word.mlf'),
|
||||
mlf_file_train_word
|
||||
)
|
||||
fh.concatenate(
|
||||
mlf_file_train_word,
|
||||
os.path.join(label_dir, 'train_word.mlf'),
|
||||
mlf_file_train_word
|
||||
)
|
||||
|
||||
|
||||
## ======================= flat start monophones =======================
|
||||
if flat_start:
|
||||
timer_start = time.time()
|
||||
@ -246,17 +312,14 @@ if flat_start:
|
||||
|
||||
chtk.flat_start(hcompv_scp_train, model_mono0_dir)
|
||||
|
||||
# create macros.
|
||||
# make macros.
|
||||
vFloors = os.path.join(model_mono0_dir, 'vFloors')
|
||||
if os.path.exists(vFloors):
|
||||
chtk.create_macros(vFloors)
|
||||
chtk.make_macros(vFloors)
|
||||
|
||||
# allocate mean & variance to all phones in the phone list
|
||||
print('>>> allocating mean & variance to all phones in the phone list...')
|
||||
chtk.create_hmmdefs(
|
||||
os.path.join(model_mono0_dir, proto_name),
|
||||
os.path.join(model_mono0_dir, 'hmmdefs')
|
||||
)
|
||||
chtk.make_hmmdefs(model_mono0_dir)
|
||||
|
||||
print("elapsed time: {}".format(time.time() - timer_start))
|
||||
|
||||
@ -320,8 +383,9 @@ if train_monophone_with_re_aligned_mlf:
|
||||
os.path.join(modeln_dir, 'macros'),
|
||||
os.path.join(modeln_dir, 'hmmdefs'),
|
||||
mlf_file_train_aligned,
|
||||
os.path.join(label_dir, 'train_word.mlf'),
|
||||
mlf_file_train_word,
|
||||
hcompv_scp_train)
|
||||
chtk.fix_mlf(mlf_file_train_aligned)
|
||||
|
||||
print('>>> updating the script file... ')
|
||||
chtk.update_script_file(
|
||||
@ -349,24 +413,55 @@ if train_monophone_with_re_aligned_mlf:
|
||||
print("elapsed time: {}".format(time.time() - timer_start))
|
||||
|
||||
|
||||
## ======================= train triphone =======================
|
||||
if train_triphone:
|
||||
print('==== traina triphone model ====')
|
||||
## ======================= increase mixture =======================
|
||||
if increase_mixture:
|
||||
print('==== increase mixture ====')
|
||||
timer_start = time.time()
|
||||
for nmix in [2, 4, 8, 16]:
|
||||
if nmix == 2:
|
||||
modeln_dir_ = model_mono1sp2_dir
|
||||
else:
|
||||
modeln_dir_ = os.path.join(model_dir, 'mono'+str(nmix_))
|
||||
modeln_dir = os.path.join(model_dir, 'mono'+str(nmix))
|
||||
|
||||
triphonelist_txt = os.path.join(config_dir, 'triphonelist.txt')
|
||||
triphone_mlf = os.path.join(default.htk_dir, 'label', 'train_triphone.mlf')
|
||||
print('mixture: {}'.format(nmix))
|
||||
fh.make_new_directory(modeln_dir, existing_dir='delete')
|
||||
niter = chtk.get_niter_max(modeln_dir_)
|
||||
chtk.increase_mixture(
|
||||
os.path.join(modeln_dir_, 'iter'+str(niter), 'hmmdefs'),
|
||||
nmix,
|
||||
os.path.join(modeln_dir, 'iter0'),
|
||||
model_type='monophone_with_sp')
|
||||
shutil.copy2(os.path.join(modeln_dir_, 'iter'+str(niter), 'macros'),
|
||||
os.path.join(modeln_dir, 'iter0', 'macros'))
|
||||
|
||||
print('>>> making triphone list... ')
|
||||
chtk.make_triphonelist(
|
||||
triphonelist_txt,
|
||||
triphone_mlf,
|
||||
mlf_file_train_aligned)
|
||||
#improvement_threshold = -10
|
||||
niter = chtk.re_estimation_until_saturated(
|
||||
modeln_dir,
|
||||
os.path.join(modeln_dir_, 'iter0'),
|
||||
improvement_threshold,
|
||||
hcompv_scp_train_updated,
|
||||
os.path.join(htk_stimmen_dir, 'mfc'),
|
||||
'mfc',
|
||||
os.path.join(htk_stimmen_dir, 'word_lattice.ltc'),
|
||||
mlf_file=mlf_file_train_aligned,
|
||||
lexicon=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic'),
|
||||
model_type='monophone_with_sp'
|
||||
)
|
||||
nmix_ = nmix
|
||||
|
||||
print('>>> making triphone header... ')
|
||||
chtk.make_tri_hed(
|
||||
os.path.join(config_dir, 'mktri.hed')
|
||||
)
|
||||
print("elapsed time: {}".format(time.time() - timer_start))
|
||||
|
||||
|
||||
## ======================= train triphone =======================
|
||||
print('>>> making triphone list... ')
|
||||
chtk.make_triphonelist(
|
||||
mlf_file_train_aligned,
|
||||
triphone_mlf)
|
||||
|
||||
if train_triphone:
|
||||
print('==== train triphone model ====')
|
||||
timer_start = time.time()
|
||||
|
||||
print('>>> init triphone model... ')
|
||||
niter = chtk.get_niter_max(model_mono1sp2_dir)
|
||||
@ -377,8 +472,8 @@ if train_triphone:
|
||||
)
|
||||
|
||||
print('>>> re-estimation... ')
|
||||
# I wanted to train until satulated:
|
||||
# #niter = chtk.re_estimation_until_saturated(
|
||||
## I wanted to train until satulated:
|
||||
#niter = chtk.re_estimation_until_saturated(
|
||||
# model_tri1_dir,
|
||||
# os.path.join(model_tri1_dir, 'iter0'),
|
||||
# improvement_threshold,
|
||||
@ -395,7 +490,6 @@ if train_triphone:
|
||||
# ERROR [+8231] GetHCIModel: Cannot find hmm [i:-]r[+???]
|
||||
# therefore only two times re-estimation is performed.
|
||||
output_dir = model_tri1_dir
|
||||
|
||||
for niter in range(1, 4):
|
||||
hmm_n = 'iter' + str(niter)
|
||||
hmm_n_pre = 'iter' + str(niter-1)
|
||||
@ -414,18 +508,59 @@ if train_triphone:
|
||||
print("elapsed time: {}".format(time.time() - timer_start))
|
||||
|
||||
|
||||
## ======================= train triphone =======================
|
||||
## ======================= train tied-state triphones =======================
|
||||
if train_triphone_tied:
|
||||
print('==== traina tied-state triphone ====')
|
||||
print('==== train tied-state triphones ====')
|
||||
timer_start = time.time()
|
||||
|
||||
print('>>> making lexicon for triphone... ')
|
||||
chtk.make_triphone_full(phonelist_full_txt, lexicon_htk_triphone)
|
||||
chtk.make_lexicon_triphone(phonelist_full_txt, lexicon_htk_triphone)
|
||||
chtk.combine_phonelists(phonelist_full_txt)
|
||||
|
||||
print('>>> making headers... ')
|
||||
chtk.make_tree_header(tree_hed)
|
||||
fame_phonetics.make_quests_hed(quest_hed)
|
||||
print('>>> making a tree header... ')
|
||||
fame_phonetics.make_quests_hed(quests_hed)
|
||||
stats = os.path.join(r'c:\OneDrive\Research\rug\experiments\acoustic_model\fame\htk\model\tri1\iter3', 'stats')
|
||||
chtk.make_tree_header(tree_hed, quests_hed, stats, config_dir)
|
||||
|
||||
print("elapsed time: {}".format(time.time() - timer_start))
|
||||
print('>>> init triphone model... ')
|
||||
niter = chtk.get_niter_max(model_tri1_dir)
|
||||
fh.make_new_directory(os.path.join(model_tri1tied_dir, 'iter0'), existing_dir='leave')
|
||||
chtk.init_triphone(
|
||||
os.path.join(model_tri1_dir, 'iter'+str(niter)),
|
||||
os.path.join(model_tri1tied_dir, 'iter0'),
|
||||
tied=True)
|
||||
|
||||
# I wanted to train until satulated:
|
||||
#niter = chtk.re_estimation_until_saturated(
|
||||
# model_tri1tied_dir,
|
||||
# os.path.join(model_tri1tied_dir, 'iter0'),
|
||||
# improvement_threshold,
|
||||
# hcompv_scp_train_updated,
|
||||
# os.path.join(htk_stimmen_dir, 'mfc'),
|
||||
# 'mfc',
|
||||
# os.path.join(htk_stimmen_dir, 'word_lattice.ltc'),
|
||||
# mlf_file=triphone_mlf,
|
||||
# lexicon=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic'),
|
||||
# model_type='triphone'
|
||||
# )
|
||||
#
|
||||
# but because the data size is limited, some triphone cannot be trained and received the error:
|
||||
# ERROR [+8231] GetHCIModel: Cannot find hmm [i:-]r[+???]
|
||||
# therefore only 3 times re-estimation is performed.
|
||||
output_dir = model_tri1tied_dir
|
||||
for niter in range(1, 4):
|
||||
hmm_n = 'iter' + str(niter)
|
||||
hmm_n_pre = 'iter' + str(niter-1)
|
||||
_modeln_dir = os.path.join(output_dir, hmm_n)
|
||||
_modeln_dir_pre = os.path.join(output_dir, hmm_n_pre)
|
||||
|
||||
fh.make_new_directory(_modeln_dir, 'leave')
|
||||
chtk.re_estimation(
|
||||
os.path.join(_modeln_dir_pre, 'hmmdefs'),
|
||||
_modeln_dir,
|
||||
hcompv_scp_train_updated,
|
||||
mlf_file=triphone_mlf,
|
||||
macros=os.path.join(_modeln_dir_pre, 'macros'),
|
||||
model_type='triphone')
|
||||
|
||||
print("elapsed time: {}".format(time.time() - timer_start))
|
Reference in New Issue
Block a user