xsampa to ipa conversion is added.
This commit is contained in:
parent
a8dbb51d0c
commit
5fb05ddab2
Binary file not shown.
@ -13,7 +13,7 @@ import pandas as pd
|
||||
repo_dir = 'C:\\Users\\Aki\\source\\repos\\acoustic_model'
|
||||
curr_dir = repo_dir + '\\acoustic_model'
|
||||
config_ini = curr_dir + '\\config.ini'
|
||||
output_dir = 'd:\\OneDrive\\Research\\rug\\experiments\\friesian\\acoustic_model'
|
||||
output_dir = 'C:\\OneDrive\\Research\\rug\\experiments\\friesian\\acoustic_model'
|
||||
forced_alignment_module = 'C:\\Users\\Aki\\source\\repos\\forced_alignment'
|
||||
|
||||
dataset_list = ['devel', 'test', 'train']
|
||||
|
@ -2,4 +2,4 @@
|
||||
config_hcopy = c:\cygwin64\home\Aki\acoustic_model\config\config.HCopy
|
||||
config_train = c:\cygwin64\home\Aki\acoustic_model\config\config.train
|
||||
mkhmmdefs_pl = c:\cygwin64\home\Aki\acoustic_model\src\acoustic_model\mkhmmdefs.pl
|
||||
FAME_dir = d:\OneDrive\Research\rug\experiments\friesian\corpus
|
||||
FAME_dir = c:\OneDrive\Research\rug\experiments\friesian\corpus
|
@ -2,25 +2,54 @@ import os
|
||||
import sys
|
||||
import csv
|
||||
import subprocess
|
||||
import configparser
|
||||
|
||||
import numpy as np
|
||||
|
||||
import convert_xsampa2ipa
|
||||
import pandas as pd
|
||||
|
||||
|
||||
## ======================= user define =======================
|
||||
curr_dir = r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model'
|
||||
config_ini = curr_dir + '\\config.ini'
|
||||
forced_alignment_module = r'C:\Users\Aki\source\repos\forced_alignment'
|
||||
ipa_xsampa_converter_dir = r'C:\Users\Aki\source\repos\ipa-xsama-converter'
|
||||
csvfile = r"C:\OneDrive\Research\rug\stimmen\Frisian Variants Picture Task Stimmen.csv"
|
||||
|
||||
# procedure
|
||||
|
||||
|
||||
## ======================= add paths =======================
|
||||
|
||||
sys.path.append(forced_alignment_module)
|
||||
from forced_alignment import convert_phone_set
|
||||
|
||||
# for interactive window
|
||||
sys.path.append(curr_dir)
|
||||
import convert_xsampa2ipa
|
||||
import acoustic_model_functions as am_func
|
||||
|
||||
|
||||
## ======================= load variables =======================
|
||||
config = configparser.ConfigParser()
|
||||
config.sections()
|
||||
config.read(config_ini)
|
||||
|
||||
FAME_dir = config['Settings']['FAME_dir']
|
||||
|
||||
lex_asr = FAME_dir + '\\lexicon\\lex.asr'
|
||||
lex_asr_htk = FAME_dir + '\\lexicon\\lex.asr_htk'
|
||||
|
||||
|
||||
## ======================= check phones included in FAME! =======================
|
||||
# the phones used in the lexicon.
|
||||
#phonelist = am_func.get_phonelist(lex_htk)
|
||||
|
||||
# the lines which include a specific phone.
|
||||
#lines = am_func.find_phone(lex_asr, 'x')
|
||||
|
||||
|
||||
## ======================= convert phones ======================
|
||||
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', ipa_xsampa_converter_dir)
|
||||
#word_xsampa = 'e:j@X'
|
||||
#word_ipa = convert_xsampa2ipa.conversion('xsampa', 'ipa', mapping, word_xsampa)
|
||||
|
||||
with open(csvfile, encoding="utf-8") as fin:
|
||||
lines = csv.reader(fin, delimiter=';', lineterminator="\n", skipinitialspace=True)
|
||||
@ -33,14 +62,42 @@ with open(csvfile, encoding="utf-8") as fin:
|
||||
if line[1] is not '' and len(line) > 5:
|
||||
filenames.append(line[0])
|
||||
words.append(line[1])
|
||||
word_xsampa = line[3]
|
||||
word_ipa = convert_xsampa2ipa.conversion('xsampa', 'ipa', mapping, word_xsampa)
|
||||
word_ipa = word_ipa.replace('ː', ':')
|
||||
word_famehtk = convert_phone_set.ipa2famehtk(word_ipa)
|
||||
pronunciations.append(word_famehtk)
|
||||
phonelist = ' '.join(pronunciations)
|
||||
np.unique(phonelist.split(' '))
|
||||
pron_xsampa = line[3]
|
||||
pron_ipa = convert_xsampa2ipa.conversion('xsampa', 'ipa', mapping, pron_xsampa)
|
||||
pron_ipa = pron_ipa.replace('ː', ':')
|
||||
pron_famehtk = convert_phone_set.ipa2famehtk(pron_ipa)
|
||||
|
||||
# adjust to phones used in the acoustic model.
|
||||
pron_famehtk = pron_famehtk.replace('sp', 'sil')
|
||||
pron_famehtk = pron_famehtk.replace('ce :', 'ce') # because ceh is ignored.
|
||||
pron_famehtk = pron_famehtk.replace('w :', 'wh')
|
||||
pron_famehtk = pron_famehtk.replace('e :', 'eh')
|
||||
pron_famehtk = pron_famehtk.replace('eh :', 'eh')
|
||||
pron_famehtk = pron_famehtk.replace('ih :', 'ih')
|
||||
|
||||
#translation_key = {'sp': 'sil', 'ce :': 'ceh', 'w :': 'wh'}
|
||||
#pron = []
|
||||
#for phoneme in pron_famehtk.split(' '):
|
||||
# pron.append(translation_key.get(phoneme, phoneme))
|
||||
#pronunciations.append(' '.join(pron_famehtk))
|
||||
pronunciations.append(pron_famehtk)
|
||||
|
||||
filenames = np.array(filenames)
|
||||
words = np.array(words)
|
||||
pronunciations = np.array(pronunciations)
|
||||
|
||||
del line, lines
|
||||
del pron_xsampa, pron_ipa, pron_famehtk
|
||||
|
||||
# check if all phones are in the phonelist of the acoustic model.
|
||||
#phonelist = ' '.join(pronunciations)
|
||||
#np.unique(phonelist.split(' '))
|
||||
#phonelist.find(':')
|
||||
|
||||
# make dict files.
|
||||
word_list = np.unique(words)
|
||||
word_id = 1
|
||||
word = word_list[word_id]
|
||||
|
||||
|
||||
## ======================= forced alignment =======================
|
||||
|
Loading…
Reference in New Issue
Block a user