rozen-test is added.
This commit is contained in:
parent
de5c9cecb9
commit
82a8e2302f
Binary file not shown.
Binary file not shown.
@ -36,6 +36,9 @@
|
||||
<Compile Include="fa_test.py">
|
||||
<SubType>Code</SubType>
|
||||
</Compile>
|
||||
<Compile Include="forced_aligner_comparison.py">
|
||||
<SubType>Code</SubType>
|
||||
</Compile>
|
||||
<Compile Include="novoapi_forced_alignment.py">
|
||||
<SubType>Code</SubType>
|
||||
</Compile>
|
||||
|
@ -10,14 +10,13 @@ import shutil
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.metrics import accuracy_score
|
||||
import novoapi
|
||||
|
||||
import defaultfiles as default
|
||||
sys.path.append(default.forced_alignment_module_dir)
|
||||
from forced_alignment import pyhtk, convert_phone_set
|
||||
from forced_alignment import convert_phone_set
|
||||
#import acoustic_model_functions as am_func
|
||||
import convert_xsampa2ipa
|
||||
import novoapi_functions
|
||||
@ -47,10 +46,6 @@ david_suggestion = ['ɔː', 'ɪː', 'iː', 'œː', 'ɛː', 'w']
|
||||
## read pronunciation variants.
|
||||
stimmen_transcription_ = pd.ExcelFile(default.stimmen_transcription_xlsx)
|
||||
df = pd.read_excel(stimmen_transcription_, 'frequency')
|
||||
#for xsampa, ipa in zip(df['X-SAMPA'], df['IPA']):
|
||||
# ipa_converted = convert_xsampa2ipa.xsampa2ipa(mapping, xsampa)
|
||||
# if not ipa_converted == ipa:
|
||||
# print('{0}: {1} - {2}'.format(xsampa, ipa_converted, ipa))
|
||||
transcription_ipa = list(df['IPA'])
|
||||
|
||||
# transcription mistake?
|
||||
@ -63,6 +58,7 @@ for ipa in transcription_ipa:
|
||||
ipa = ipa.replace(':', 'ː')
|
||||
ipa = convert_phone_set.split_ipa(ipa)
|
||||
|
||||
# list of phones not in novo70 phoneset.
|
||||
not_in_novo70_ = [phone for phone in ipa
|
||||
if not phone in phoneset_ipa and not phone in david_suggestion]
|
||||
not_in_novo70_ = [phone.replace('sp', '') for phone in not_in_novo70_]
|
||||
@ -106,6 +102,10 @@ df = pd.read_excel(stimmen_transcription_, 'original')
|
||||
|
||||
# mapping from ipa to xsampa
|
||||
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', default.ipa_xsampa_converter_dir)
|
||||
#for xsampa, ipa in zip(df['X-SAMPA'], df['IPA']):
|
||||
# ipa_converted = convert_xsampa2ipa.xsampa2ipa(mapping, xsampa)
|
||||
# if not ipa_converted == ipa:
|
||||
# print('{0}: {1} - {2}'.format(xsampa, ipa_converted, ipa))
|
||||
|
||||
ipas = []
|
||||
famehtks = []
|
||||
@ -153,12 +153,12 @@ for word in word_list:
|
||||
|
||||
|
||||
## ===== forced alignment =====
|
||||
reus_dir = r'C:\OneDrive\Desktop\Reus'
|
||||
rozen_dir = r'c:\Users\Aki\source\repos\acoustic_model\rozen-test'
|
||||
if forced_alignment_novo70:
|
||||
Results = pd.DataFrame(index=[],
|
||||
columns=['filename', 'word', 'xsampa', 'ipa', 'result_ipa', 'result_novo70', 'llh'])
|
||||
#for word in word_list:
|
||||
for word in ['Reus']:
|
||||
for word in ['Rozen']:
|
||||
# pronunciation variants top 3
|
||||
df_per_word_ = df_per_word[df_per_word['word']==word]
|
||||
df_per_word_ = df_per_word_.sort_values('frequency', ascending=False)
|
||||
@ -208,37 +208,35 @@ if forced_alignment_novo70:
|
||||
wav_file = os.path.join(default.stimmen_wav_dir, filename)
|
||||
if os.path.exists(wav_file):
|
||||
# for Martijn
|
||||
#shutil.copy(wav_file, os.path.join(reus_dir, filename))
|
||||
shutil.copy(wav_file, os.path.join(rozen_dir, filename))
|
||||
|
||||
pronunciation_ipa_ = [ipa.replace(':', 'ː') for ipa in pronunciation_ipa]
|
||||
result = novoapi_functions.forced_alignment(wav_file, word, pronunciation_ipa_)
|
||||
result_ipa, result_novo70, llh = novoapi_functions.result2pronunciation(result, word)
|
||||
result_ = pd.Series([
|
||||
sample['filename'],
|
||||
sample['word'],
|
||||
sample['xsampa'],
|
||||
sample['ipa'],
|
||||
' '.join(result_ipa),
|
||||
' '.join(result_novo70),
|
||||
llh
|
||||
], index=results.columns)
|
||||
results = results.append(result_, ignore_index = True)
|
||||
print('{0}/{1}: answer {2} - prediction {3}'.format(
|
||||
i+1, len(samples), result_['ipa'], result_['result_ipa']))
|
||||
results.to_excel(os.path.join(reus_dir, 'results.xlsx'), encoding="utf-8")
|
||||
if len(results) > 0:
|
||||
Results = Results.append(results, ignore_index = True)
|
||||
Results.to_excel(os.path.join(default.stimmen_dir, 'Results.xlsx'), encoding="utf-8")
|
||||
# pronunciation_ipa_ = [ipa.replace(':', 'ː') for ipa in pronunciation_ipa]
|
||||
# result = novoapi_functions.forced_alignment(wav_file, word, pronunciation_ipa_)
|
||||
# result_ipa, result_novo70, llh = novoapi_functions.result2pronunciation(result, word)
|
||||
# result_ = pd.Series([
|
||||
# sample['filename'],
|
||||
# sample['word'],
|
||||
# sample['xsampa'],
|
||||
# sample['ipa'],
|
||||
# ' '.join(result_ipa),
|
||||
# ' '.join(result_novo70),
|
||||
# llh
|
||||
# ], index=results.columns)
|
||||
# results = results.append(result_, ignore_index = True)
|
||||
# print('{0}/{1}: answer {2} - prediction {3}'.format(
|
||||
# i+1, len(samples), result_['ipa'], result_['result_ipa']))
|
||||
# #results.to_excel(os.path.join(default.stimmen_dir, 'results.xlsx'), encoding="utf-8")
|
||||
#if len(results) > 0:
|
||||
# Results = Results.append(results, ignore_index = True)
|
||||
#Results.to_excel(os.path.join(default.stimmen_result_novoapi_dir, 'Results.xlsx'), encoding="utf-8")
|
||||
else:
|
||||
Results_xlsx = pd.ExcelFile(os.path.join(default.stimmen_dir, 'Results.xlsx'), encoding="utf-8")
|
||||
Results_xlsx = pd.ExcelFile(os.path.join(default.stimmen_result_novoapi_dir, 'Results.xlsx'), encoding="utf-8")
|
||||
Results = pd.read_excel(Results_xlsx, 'Sheet1')
|
||||
|
||||
|
||||
## ===== analysis =====
|
||||
#result_novoapi_dir = os.path.join(default.stimmen_dir, 'result', 'novoapi')
|
||||
#for word in word_list:
|
||||
# if not word == 'Oog':
|
||||
|
||||
# Results_ = Results[Results['word'] == word]
|
||||
# y_true = list(Results_['ipa'])
|
||||
# y_pred_ = [ipa.replace(' ', '') for ipa in list(Results_['result_ipa'])]
|
||||
@ -249,4 +247,4 @@ else:
|
||||
# plt.figure()
|
||||
# output_confusion_matrix.plot_confusion_matrix(cm, pronunciation_variants, normalize=False)
|
||||
# #plt.show()
|
||||
# plt.savefig(os.path.join(result_novoapi_dir, word + '.png'))
|
||||
# plt.savefig(os.path.join(default.stimmen_result_novoapi_dir, word + '.png'))
|
@ -43,6 +43,7 @@ stimmen_data_dir = os.path.join(stimmen_dir, 'data')
|
||||
#stimmen_wav_dir = os.path.join(stimmen_dir, 'wav')
|
||||
# 16 kHz
|
||||
stimmen_wav_dir = r'c:\OneDrive\WSL\kaldi-trunk\egs\fame\s5\corpus\stimmen'
|
||||
stimmen_result_novoapi_dir = os.path.join(stimmen_dir, 'result', 'novoapi')
|
||||
|
||||
stimmen_transcription_xlsx = os.path.join(stimmen_data_dir, 'Frisian Variants Picture Task Stimmen.xlsx')
|
||||
phonelist_friesian_txt = os.path.join(experiments_dir, 'friesian', 'acoustic_model', 'config', 'phonelist_friesian.txt')
|
||||
|
10
acoustic_model/forced_aligner_comparison.py
Normal file
10
acoustic_model/forced_aligner_comparison.py
Normal file
@ -0,0 +1,10 @@
|
||||
import os
|
||||
os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
|
||||
|
||||
import defaultfiles as default
|
||||
|
||||
wav_dir = r'c:\Users\Aki\source\repos\acoustic_model\reus-test'
|
||||
wav_files = ['reus1008-reus.wav',
|
||||
'reus1167-man.wav',
|
||||
'reus3768-mantsje.wav']
|
||||
|
@ -7,7 +7,7 @@ import json
|
||||
from novoapi.backend import session
|
||||
|
||||
import os
|
||||
os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
|
||||
#os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
|
||||
import defaultfiles as default
|
||||
|
||||
|
||||
|
BIN
reus-test/check_novoapi.zip
Normal file
BIN
reus-test/check_novoapi.zip
Normal file
Binary file not shown.
BIN
rozen-test/pg_rozen_100_jko5r.wav
Normal file
BIN
rozen-test/pg_rozen_100_jko5r.wav
Normal file
Binary file not shown.
BIN
rozen-test/pg_rozen_113_o9kzs.wav
Normal file
BIN
rozen-test/pg_rozen_113_o9kzs.wav
Normal file
Binary file not shown.
BIN
rozen-test/pg_rozen_1296_zbve2.wav
Normal file
BIN
rozen-test/pg_rozen_1296_zbve2.wav
Normal file
Binary file not shown.
BIN
rozen-test/pg_rozen_1709_kq9xr.wav
Normal file
BIN
rozen-test/pg_rozen_1709_kq9xr.wav
Normal file
Binary file not shown.
BIN
rozen-test/pg_rozen_241_bahqi.wav
Normal file
BIN
rozen-test/pg_rozen_241_bahqi.wav
Normal file
Binary file not shown.
BIN
rozen-test/pg_rozen_5502_q79fd.wav
Normal file
BIN
rozen-test/pg_rozen_5502_q79fd.wav
Normal file
Binary file not shown.
BIN
rozen-test/pg_rozen_632_2m04y.wav
Normal file
BIN
rozen-test/pg_rozen_632_2m04y.wav
Normal file
Binary file not shown.
BIN
rozen-test/pg_rozen_911_1zvda.wav
Normal file
BIN
rozen-test/pg_rozen_911_1zvda.wav
Normal file
Binary file not shown.
119
rozen-test/rozen-test.py
Normal file
119
rozen-test/rozen-test.py
Normal file
@ -0,0 +1,119 @@
|
||||
#!/usr/bin/env python
|
||||
import os
|
||||
os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
||||
from novoapi.backend import session
|
||||
|
||||
p = argparse.ArgumentParser()
|
||||
p.add_argument("--user", default='martijn.wieling')
|
||||
p.add_argument("--password", default='xxxxx')
|
||||
args = p.parse_args()
|
||||
|
||||
rec = session.Recognizer(grammar_version="1.0", lang="nl", snodeid=101, user=args.user, password=args.password, keepopen=True)
|
||||
|
||||
grammar = {
|
||||
"type": "confusion_network",
|
||||
"version": "1.0",
|
||||
"data": {
|
||||
"kind": "sequence",
|
||||
"elements": [
|
||||
{
|
||||
"kind": "word",
|
||||
"pronunciation": [
|
||||
{
|
||||
"phones": [
|
||||
"r",
|
||||
"eu0",
|
||||
"s"
|
||||
],
|
||||
"id": 0
|
||||
}
|
||||
,
|
||||
{
|
||||
"phones": [
|
||||
"m",
|
||||
"a0",
|
||||
"n"
|
||||
],
|
||||
"id": 1
|
||||
}
|
||||
,
|
||||
{
|
||||
"phones": [
|
||||
"m",
|
||||
"a0",
|
||||
"n",
|
||||
"t",
|
||||
"s",
|
||||
"y",
|
||||
"ax"
|
||||
],
|
||||
"id": 2
|
||||
}
|
||||
],
|
||||
"label": "reus"
|
||||
}
|
||||
]
|
||||
},
|
||||
"return_objects": [
|
||||
"grammar"
|
||||
],
|
||||
"phoneset": "novo70"
|
||||
}
|
||||
|
||||
res = rec.setgrammar(grammar)
|
||||
#print "Set grammar result", res
|
||||
|
||||
|
||||
## === novoapi/backend/session.py ===
|
||||
#import wave
|
||||
#import time
|
||||
#from novoapi.backend.session import rpcid, segmentation
|
||||
|
||||
#wavf = "reus1008-reus.wav"
|
||||
#w = wave.open(wavf, 'r')
|
||||
#nchannels, sampwidth, framerate, nframes, comptype, compname = w.getparams()
|
||||
#buf = w.readframes(nframes)
|
||||
#w.close()
|
||||
|
||||
#buffer_size = 4096
|
||||
#nbytes_sent = 0
|
||||
#start = time.time()
|
||||
#for j in range(0, len(buf), buffer_size):
|
||||
# audio_packet = buf[j:j + buffer_size]
|
||||
# nbytes_sent += len(audio_packet)
|
||||
# rec.conn.send_binary(audio_packet)
|
||||
#rec.conn.send(json.dumps({"jsonrpc": "2.0", "method": "get_result", "id": rpcid.next()}))
|
||||
#print(rpcid.next())
|
||||
#rec.last_message = rec.conn.recv()
|
||||
#message = json.loads(rec.last_message)
|
||||
#result = session.segmentation(message["result"]["words"])
|
||||
#result.export()
|
||||
## ====================================
|
||||
|
||||
def result2pronunciation(result, word):
|
||||
#result_ = res.export()[1]
|
||||
result_ = [result[i] for i in range(len(result)) if result[i]['label'] == word]
|
||||
llh = result_[0]['llh']
|
||||
phones = result_[0]['phones']
|
||||
pronunciation = [phone['label'] for phone in phones]
|
||||
return pronunciation, llh
|
||||
|
||||
|
||||
res = rec.recognize_wav("reus1008-reus.wav")
|
||||
#print "\n\n\nThe pronounced word in reus1008-reus.wav is: REUS\n\n"
|
||||
#print "Recognition result:", json.dumps(res.export(), indent=4)
|
||||
result2pronunciation(res.export(), 'reus')
|
||||
|
||||
#print "\n\n\nThe pronounced word in reus1167-man.wav is: MAN\n\n"
|
||||
res2 = rec.recognize_wav("reus1167-man.wav")
|
||||
#print "Recognition result:", json.dumps(res2.export(), indent=4)
|
||||
result2pronunciation(res2.export(), 'reus')
|
||||
|
||||
#print "\n\n\nThe pronounced word in reus3768-mantsje.wav is: MANTSJE\n\n"
|
||||
res3 = rec.recognize_wav("reus3768-mantsje.wav")
|
||||
#print "Recognition result:", json.dumps(res3.export(), indent=4)
|
||||
result2pronunciation(res3.export(), 'reus')
|
Loading…
Reference in New Issue
Block a user