the script 'forced_alignment_novo.py' which is to run novo_api on Python 3.6 environment is added.

This commit is contained in:
yemaozi88
2018-12-26 23:49:28 +01:00
parent 0777735979
commit b87a81eb9d
30 changed files with 1258 additions and 32 deletions

View File

@@ -0,0 +1,6 @@
#!/usr/bin/env python
#import segments
#import spraaklab
from . import segments
from . import spraaklab

View File

@@ -0,0 +1,4 @@
#!/usr/bin/env python
from .segments import Segmentation
from .praat import seg2tg

View File

@@ -0,0 +1,77 @@
#!/usr/bin/env python
# (c) 2015--2018 NovoLanguage, author: David A. van Leeuwen
import codecs
def print_header(output, begin, end, nr_tiers):
print >> output, 'File type = "ooTextFile"'
print >> output, 'Object class = "TextGrid"'
print >> output, ''
print >> output, 'xmin = %s' % begin
print >> output, 'xmax = %s' % end
print >> output, 'tiers? <exists>'
print >> output, 'size = %d' % nr_tiers
print >> output, 'item []:'
def print_info_tier(output, title, begin, end, label):
print >> output, '\titem [%d]:' % 0
print >> output, '\t\tclass = "IntervalTier"'
print >> output, '\t\tname = "%s"' % title
print >> output, '\t\txmin = %s' % begin
print >> output, '\t\txmax = %s' % end
print >> output, '\t\tintervals: size = %d' % 1
print >> output, '\t\tintervals [1]:'
print >> output, '\t\t\txmin = %s' % begin
print >> output, '\t\t\txmax = %s' % end
print >> output, '\t\t\ttext = "%s"' % label
#def print_tier(output, title, begin, end, segs, (format, formatter)):
def print_tier(output, title, begin, end, segs, format, formatter):
print >> output, '\titem [%d]:' % 0
print >> output, '\t\tclass = "IntervalTier"'
print >> output, '\t\tname = "%s"' % title
print >> output, '\t\txmin = %s' % begin
print >> output, '\t\txmax = %s' % end
print >> output, '\t\tintervals: size = %d' % len(segs)
count = 1
for seg in segs:
#print seg
print >> output, '\t\tintervals [%d]:' % count
print >> output, '\t\t\txmin = %s' % repr(int(seg['begin']) / 100.0)
print >> output, '\t\t\txmax = %s' % repr(int(seg['end']) / 100.0)
string = '\t\t\ttext = "' + format + '"'
print >> output, string % formatter(seg['label'])
count += 1
def seg2tg(fname, segments):
if not segments:
return
output = codecs.open(fname, "w", encoding="utf-8")
confidences = []
word_labels = []
phones = []
for s in segments:
conf = s.llh if hasattr(s, "llh") else s.score
confidences.append({'begin': s.begin, 'end': s.end, 'label': conf})
word_labels.append({'begin': s.begin, 'end': s.end, 'label': s.label})
for p in s.phones:
phones.append({'begin': p.begin, 'end': p.end, 'label': p.label})
begin = repr(int(segments[0].begin) / 100.0)
end = repr(int(segments[-1].end) / 100.0)
nr_tiers = 3
print_header(output, begin, end, nr_tiers)
print_tier(output, "confidence", begin, end, confidences, ('%.3f', lambda x: x))
print_tier(output, "words", begin, end, word_labels, ('%s', lambda x: x))
print_tier(output, "phones", begin, end, phones, ('%s', lambda x: x))
output.close()

View File

@@ -0,0 +1,99 @@
#!/usr/bin/env python
# (c) 2015--2018 NovoLanguage, author: David A. van Leeuwen
## These classes can be initialized with dictionaries, as they are returned by the python spraaklab recognition system.
class Segment(object):
def __init__(self, segment):
self.begin = segment["begin"]
self.end = segment["end"]
self.begintime = segment.get("beginTime", self.begin / 100.0)
self.endtime = segment.get("endTime", self.end / 100.0)
self.label = segment["label"]
self.score = segment["score"]
if "llh" in segment:
self.llh = segment["llh"]
if "phones" in segment:
self.type = "word"
self.phones = Segmentation(segment["phones"], ["sil"])
if hasattr(self.phones[0], "llh"):
self.minllh = min([s.llh for s in self.phones]) ## the current word llh for error detection
else:
self.type = "phone"
def __repr__(self):
res = "%8.3f -- %8.3f score %8.3f " % (self.begintime, self.endtime, self.score)
if hasattr(self, "llh"):
res += "llh %8.3f " % self.llh
res += self.label.encode("utf8")
return res
def export(self):
r = {"begin": self.begin, "end": self.end, "label": self.label, "score": self.score, "type": self.type}
if hasattr(self, "llh"):
r["llh"] = self.llh
if hasattr(self, "phones"):
r["phones"] = self.phones.export()
return r
class Segmentation(object):
def __init__(self, segments, sils=["<s>", "</s>", "!sil"]):
"""Create a segmentation from a spraaklab recognition structure.
segments: an array of words (or phones), represented by a dict with
"begin", "end", "label", "score", and "llh" keys. Words can also have
"phones" which is another array of segments."""
self.segments = [Segment(s) for s in segments]
if self.segments:
self.type = self.segments[0].type
else:
self.type = None
self.sils = sils
self.orig = segments ## in case we want to have access to the original recognition structure
def __getitem__(self, item):
return self.segments[item]
def __repr__(self):
ns = len(self.segments)
res = "Segmentation with %d %s%s" % (ns, self.type, "" if ns==1 else "s")
for seg in self.segments:
res += "\n " + repr(seg)
return res
def __len__(self):
return len(self.segments)
def score(self, skip=None):
if not skip:
skip = self.sils
s = 0.0
for seg in self.segments:
if seg.label not in skip:
s += seg.score
return s
def llhs(self, skip=None):
if not skip:
skip = self.sils
return [seg.llh for seg in self.segments if hasattr(seg, "llh") and seg.label not in skip]
def llh(self, skip=None):
return sum(self.llhs(skip))
def minllh(self, skip=None):
llhs = self.llhs(skip)
if llhs:
return min(llhs)
else:
return None
def labels(self, skip=None):
if not skip:
skip = self.sils
return [seg.label for seg in self.segments if seg.label not in skip]
def sentence(self, skip=None):
return " ".join(self.labels(skip))
def export(self):
return [seg.export() for seg in self.segments]

View File

@@ -0,0 +1,4 @@
#!/usr/bin/env python
#import schema
from . import schema

View File

@@ -0,0 +1,273 @@
#!/usr/bin/env python
## (c) 2017 NovoLanguage, author: David A. van Leeuwen
## The purpose of this to define the grammar structure in a json schema, so that it can be validated,
## (de)serialized, and perhaps even automatically converted to a Python class structure.
import json
import jsonschema
grammar_schema_v10 = {
"$schema": "http://json-schema.org/schema#",
"title": "NovoLanguage grammar",
"description": "A grammar specification for the NovoLanguage Automatic Speech Recognition",
"$ref": "#/definitions/group",
"definitions": {
"phones": {
"type": "array",
"items": {
"type": "string"
},
"minItems": 1
},
"pronunciation": {
"type": "object",
"properties": {
"phones": {
"$ref": "#/definitions/phones"
},
"syllables": {
"type": "array",
"items": {
"$ref": "#/definitions/syllable"
},
"minItems": 1
},
"id": {
"type": "integer",
"description": "ID to distinguish this pronunciation from other variants"
},
"meta": {
"type": "object"
}
},
"required": ["phones"]
},
"syllable": {
"type": "object",
"properties": {
"begin": {
"type": "integer",
"minimum": 0
},
"end": {
"type": "integer",
"minimum": 0
},
"stress": {
"type": "integer",
"minimum": 0
},
"tone": {
"type": "integer",
"minimum": 0
}
},
"required": ["begin", "end"]
},
"word": {
"type": "object",
"properties": {
"kind": {
"type": "string",
"enum": ["word"]
},
"label": {
"type": "string"
},
"pronunciation": {
"anyOf": [
{
"$ref": "#/definitions/pronunciation"
},
{
"type": "array",
"items": {
"anyOf": [
{
"$ref": "#/definitions/pronunciation"
},
{
"$ref": "#/definitions/phones"
}
]
},
"minItems": 1
},
{
"$ref": "#/definitions/phones"
}
]
},
"syllables": {
"type": "array",
"items": {
"$ref": "#/definitions/syllable"
}
},
"graphemes": {
"type": "array",
"items": {
"type": "string"
}
},
"id": {
"type": "integer",
"description": "ID to distinguish this word from other words (with possibly the same label)"
},
"meta": {
"type": "object"
}
},
"required": ["label"]
},
"element": {
"title": "element",
"oneOf": [
{
"$ref": "#/definitions/word"
},
{
"$ref": "#/definitions/group"
},
{
"type": ["string", "null"]
}
]
},
"group": {
"title": "element group",
"type": "object",
"properties": {
"kind": {
"type": "string",
"enum": ["sequence", "alternatives", "order"]
},
"elements": {
"type": "array",
"items": {
"$ref": "#/definitions/element"
},
"minItems": 1,
},
"meta": {
"type": "object"
}
},
"required": ["kind", "elements"]
}
}
}
grammar_schema_v01 = {
"$schema": "http://json-schema.org/schema#",
"title": "NovoLanguage grammar v0.1",
"description": "A grammar specification for the NovoLanguage Automatic Speech Recognition",
"type": "object",
"properties": {
"type": {
"type": "string",
"enum": ["multiple_choice", "word_order"]
},
"parts": {
"type": "array",
"minItems": 1,
"maxItems": 5,
"items": {
"type": ["string", "array"],
"items": {
"type": ["string"]
}
}
}
}
}
grammar_rpc_schema = {
"$schema": "http://json-schema.org/schema#",
"title": "NovoLanguage RPC grammar",
"type": "object",
"properties": {
"type": {
"type": "string",
"enum": ["confusion_network"]
},
"version": {
"type": "string",
"default": "v0.1"
},
"data": {
"type": "object"
},
"return_dict": {
"type": "boolean"
},
"return_objects": {
"type": "array",
"items": {
"type": "string",
"enum": ["dict", "grammar"]
}
},
"phoneset": {
"type": "string",
"enum": ["cmu69", "novo70", "mdbg115"]
},
"parallel_silence": {
"type": "boolean"
}
},
"required": ["type", "data"]
}
def validate(object, schema=grammar_schema_v10):
#if isinstance(object, basestring):
if isinstance(object, str):
object = json.loads(object)
if not isinstance(object, dict):
raise TypeError("Expected dict or json string")
try:
jsonschema.validate(object, schema)
except jsonschema.ValidationError:
return False
except Exception:
raise
else:
return True
def validate_rpc_grammar(message):
"""validate an rpc grammar message"""
if not validate(message, grammar_rpc_schema):
raise ValueError("Not a valid RPC grammar")
version = message.get("version", "0.1")
data = message["data"]
if version == "0.1":
if not validate(data, grammar_schema_v01):
raise ValueError("Not a valid grammar v0.1")
elif version == "1.0":
if not validate(data, grammar_schema_v10):
raise ValueError("Not a valid grammar v1.0")
else:
raise ValueError("Unsupported schema version")
## test
def test(data=None):
if not data:
data = {"kind": "sequence", "elements": [
{"kind": "alternatives", "elements": ["a plain string", "an alternative string"]},
{"kind": "word", "label": "a word", "pronunciation": {"phones": ["ah", "w", "er", "d"]}},
{"kind": "order", "elements": [{"kind": "word", "label": "another word", "visible": False}, "last word"]}]}
try:
jsonschema.validate(data, schema)
except jsonschema.ValidationError as e:
#print data, "validated not OK", e.message
print("{0} validated not OK {1}".format(data, e.message))
else:
#print data, "validated OK"
print("{} validated OK".format(data))
if __name__ == "__main__":
test()