|
|
|
@ -11,6 +11,7 @@ import glob
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pandas as pd
|
|
|
|
|
from collections import Counter
|
|
|
|
|
#import matplotlib.pyplot as plt
|
|
|
|
|
#from sklearn.metrics import confusion_matrix
|
|
|
|
|
|
|
|
|
@ -50,11 +51,14 @@ from htk import pyhtk
|
|
|
|
|
#lex_asr = os.path.join(default.fame_dir, 'lexicon', 'lex.asr')
|
|
|
|
|
#lex_asr_htk = os.path.join(default.fame_dir, 'lexicon', 'lex.asr_htk')
|
|
|
|
|
|
|
|
|
|
## procedure
|
|
|
|
|
# procedure
|
|
|
|
|
make_dic_file = 0
|
|
|
|
|
make_HTK_files = 1
|
|
|
|
|
extract_features = 0
|
|
|
|
|
#make_htk_dict_files = 0
|
|
|
|
|
#do_forced_alignment_htk = 0
|
|
|
|
|
#eval_forced_alignment_htk = 0
|
|
|
|
|
#make_kaldi_data_files = 0
|
|
|
|
|
make_kaldi_files = 0
|
|
|
|
|
#make_kaldi_lexicon_txt = 0
|
|
|
|
|
#load_forced_alignment_kaldi = 1
|
|
|
|
|
#eval_forced_alignment_kaldi = 1
|
|
|
|
@ -66,13 +70,34 @@ from htk import pyhtk
|
|
|
|
|
#sys.path.append(os.path.join(default.repo_dir, 'toolbox'))
|
|
|
|
|
#from evaluation import plot_confusion_matrix
|
|
|
|
|
|
|
|
|
|
config_dir = os.path.join(default.htk_dir, 'config')
|
|
|
|
|
model_dir = os.path.join(default.htk_dir, 'model')
|
|
|
|
|
lattice_file = os.path.join(config_dir, 'stimmen.ltc')
|
|
|
|
|
#pyhtk.create_word_lattice_file(
|
|
|
|
|
# os.path.join(config_dir, 'stimmen.net'),
|
|
|
|
|
# lattice_file)
|
|
|
|
|
hvite_scp = os.path.join(default.htk_dir, 'tmp', 'stimmen_test.scp')
|
|
|
|
|
## HTK related files.
|
|
|
|
|
config_dir = os.path.join(default.htk_dir, 'config')
|
|
|
|
|
model_dir = os.path.join(default.htk_dir, 'model')
|
|
|
|
|
feature_dir = os.path.join(default.htk_dir, 'mfc', 'stimmen')
|
|
|
|
|
|
|
|
|
|
config_hcopy = os.path.join(config_dir, 'config.HCopy')
|
|
|
|
|
|
|
|
|
|
# files to be made.
|
|
|
|
|
lattice_file = os.path.join(config_dir, 'stimmen.ltc')
|
|
|
|
|
phonelist_txt = os.path.join(config_dir, 'phonelist.txt')
|
|
|
|
|
stimmen_dic = os.path.join(default.htk_dir, 'lexicon', 'stimmen_recognition.dic')
|
|
|
|
|
hcopy_scp = os.path.join(default.htk_dir, 'tmp', 'stimmen_test_hcopy.scp')
|
|
|
|
|
hvite_scp = os.path.join(default.htk_dir, 'tmp', 'stimmen_test_hvite.scp')
|
|
|
|
|
hresult_scp = os.path.join(default.htk_dir, 'tmp', 'stimmen_test_result.scp')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Kaldi related files.
|
|
|
|
|
kaldi_data_dir = os.path.join(default.kaldi_dir, 'data')
|
|
|
|
|
|
|
|
|
|
# files to be made.
|
|
|
|
|
wav_scp = os.path.join(kaldi_data_dir, 'test', 'wav.scp')
|
|
|
|
|
text_file = os.path.join(kaldi_data_dir, 'test', 'text')
|
|
|
|
|
utt2spk = os.path.join(kaldi_data_dir, 'test', 'utt2spk')
|
|
|
|
|
corpus_txt = os.path.join(kaldi_data_dir, 'local', 'corpus.txt')
|
|
|
|
|
lexicon_txt = os.path.join(kaldi_data_dir, 'local', 'dict', 'lexicon.txt')
|
|
|
|
|
nonsilence_phones_txt = os.path.join(kaldi_data_dir, 'local', 'dict', 'nonsilence_phones.txt')
|
|
|
|
|
silence_phones_txt = os.path.join(kaldi_data_dir, 'local', 'dict', 'silence_phones.txt')
|
|
|
|
|
optional_silence_txt = os.path.join(kaldi_data_dir, 'local', 'dict', 'optional_silence.txt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= load test data ======================
|
|
|
|
@ -85,392 +110,468 @@ df = stimmen_functions.add_row_htk(df)
|
|
|
|
|
word_list = [i for i in list(set(df['word'])) if not pd.isnull(i)]
|
|
|
|
|
word_list = sorted(word_list)
|
|
|
|
|
|
|
|
|
|
# pronunciation variants
|
|
|
|
|
|
|
|
|
|
## ======================= make dic file to check pronunciation variants ======================
|
|
|
|
|
# dic file should be manually modified depends on the task - recognition / forced-alignemnt.
|
|
|
|
|
if make_dic_file:
|
|
|
|
|
# for HTK.
|
|
|
|
|
with open(stimmen_dic, mode='wb') as f:
|
|
|
|
|
for word in word_list:
|
|
|
|
|
df_ = df[df['word']==word]
|
|
|
|
|
pronunciations = list(np.unique(df_['htk']))
|
|
|
|
|
pronunciations_ = [word.upper() + ' sil ' + ' '.join(convert_phoneset.split_word(
|
|
|
|
|
htk, fame_asr.multi_character_phones_htk)) + ' sil'
|
|
|
|
|
for htk in pronunciations]
|
|
|
|
|
f.write(bytes('\n'.join(pronunciations_) + '\n', 'ascii'))
|
|
|
|
|
f.write(bytes('SILENCE sil\n', 'ascii'))
|
|
|
|
|
|
|
|
|
|
# for Kaldi.
|
|
|
|
|
fh.make_new_directory(os.path.join(kaldi_data_dir, 'local', 'dict'))
|
|
|
|
|
with open(lexicon_txt, mode='wb') as f:
|
|
|
|
|
f.write(bytes('!SIL sil\n', 'utf-8'))
|
|
|
|
|
f.write(bytes('<UNK> spn\n', 'utf-8'))
|
|
|
|
|
for word in word_list:
|
|
|
|
|
df_ = df[df['word']==word]
|
|
|
|
|
pronunciations = list(np.unique(df_['asr']))
|
|
|
|
|
pronunciations_ = [word.lower() + ' ' + ' '.join(convert_phoneset.split_word(
|
|
|
|
|
asr, fame_asr.multi_character_phones))
|
|
|
|
|
for asr in pronunciations]
|
|
|
|
|
f.write(bytes('\n'.join(pronunciations_) + '\n', 'utf-8'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= test data for recognition ======================
|
|
|
|
|
# only target pronunciation variants.
|
|
|
|
|
df_rec = pd.DataFrame(index=[], columns=list(df.keys()))
|
|
|
|
|
for word in word_list:
|
|
|
|
|
df_ = df[df['word']==word]
|
|
|
|
|
print('{0} has {1} variants'.format(word, len(np.unique(df_['htk'])))
|
|
|
|
|
variants = [htk.replace(' ', '')
|
|
|
|
|
for htk in stimmen_functions.load_pronunciations(word.upper(), stimmen_dic)]
|
|
|
|
|
df_ = df[df['word'] == word]
|
|
|
|
|
for index, row in df_.iterrows():
|
|
|
|
|
if row['htk'] in variants:
|
|
|
|
|
df_rec = df_rec.append(row, ignore_index=True)
|
|
|
|
|
|
|
|
|
|
#fh.make_filelist(stimmen_test_dir, hvite_scp, file_type='wav')
|
|
|
|
|
|
|
|
|
|
#output = pyhtk.recognition(
|
|
|
|
|
# os.path.join(default.htk_dir, 'config', 'config.rec',
|
|
|
|
|
# lattice_file,
|
|
|
|
|
# os.path.join(model_dir, 'hmm1', 'iter13'),
|
|
|
|
|
# dictionary_file,
|
|
|
|
|
# os.path.join(config_dir, 'phonelist.txt'),
|
|
|
|
|
# hvite_scp)
|
|
|
|
|
## ======================= make files required for HTK ======================
|
|
|
|
|
if make_HTK_files:
|
|
|
|
|
# make a word lattice file.
|
|
|
|
|
pyhtk.create_word_lattice_file(
|
|
|
|
|
os.path.join(config_dir, 'stimmen.net'),
|
|
|
|
|
lattice_file)
|
|
|
|
|
|
|
|
|
|
#pyhtk.create_label_file(
|
|
|
|
|
# row['word'],
|
|
|
|
|
# os.path.join(stimmen_test_dir, filename.replace('.wav', '.lab')))
|
|
|
|
|
# extract features.
|
|
|
|
|
with open(hcopy_scp, 'wb') as f:
|
|
|
|
|
filelist = [os.path.join(stimmen_test_dir, filename) + '\t'
|
|
|
|
|
+ os.path.join(feature_dir, os.path.basename(filename).replace('.wav', '.mfc'))
|
|
|
|
|
for filename in df['filename']]
|
|
|
|
|
f.write(bytes('\n'.join(filelist), 'ascii'))
|
|
|
|
|
pyhtk.wav2mfc(config_hcopy, hcopy_scp)
|
|
|
|
|
|
|
|
|
|
# make label files.
|
|
|
|
|
for index, row in df.iterrows():
|
|
|
|
|
filename = row['filename'].replace('.wav', '.lab')
|
|
|
|
|
label_file = os.path.join(feature_dir, filename)
|
|
|
|
|
with open(label_file, 'wb') as f:
|
|
|
|
|
label_string = 'START\n' + row['word'].upper() + '\nEND\n'
|
|
|
|
|
f.write(bytes(label_string, 'ascii'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= make files required for Kaldi =======================
|
|
|
|
|
if make_kaldi_files:
|
|
|
|
|
fh.make_new_directory(os.path.join(kaldi_data_dir, 'test'))
|
|
|
|
|
fh.make_new_directory(os.path.join(kaldi_data_dir, 'test', 'local'))
|
|
|
|
|
fh.make_new_directory(os.path.join(kaldi_data_dir, 'conf'))
|
|
|
|
|
|
|
|
|
|
# remove previous files.
|
|
|
|
|
if os.path.exists(wav_scp):
|
|
|
|
|
os.remove(wav_scp)
|
|
|
|
|
if os.path.exists(text_file):
|
|
|
|
|
os.remove(text_file)
|
|
|
|
|
if os.path.exists(utt2spk):
|
|
|
|
|
os.remove(utt2spk)
|
|
|
|
|
|
|
|
|
|
f_wav_scp = open(wav_scp, 'a', encoding="utf-8", newline='\n')
|
|
|
|
|
f_text_file = open(text_file, 'a', encoding="utf-8", newline='\n')
|
|
|
|
|
f_utt2spk = open(utt2spk, 'a', encoding="utf-8", newline='\n')
|
|
|
|
|
|
|
|
|
|
# make wav.scp, text, and utt2spk files.
|
|
|
|
|
for i, row in df_rec.iterrows():
|
|
|
|
|
filename = row['filename']
|
|
|
|
|
print('=== {0}: {1} ==='.format(i, filename))
|
|
|
|
|
|
|
|
|
|
wav_file = os.path.join(stimmen_test_dir, filename)
|
|
|
|
|
#if os.path.exists(wav_file):
|
|
|
|
|
speaker_id = 'speaker_' + str(i).zfill(4)
|
|
|
|
|
utterance_id = filename.replace('.wav', '')
|
|
|
|
|
utterance_id = utterance_id.replace(' ', '_')
|
|
|
|
|
utterance_id = speaker_id + '-' + utterance_id
|
|
|
|
|
|
|
|
|
|
# output
|
|
|
|
|
f_wav_scp.write('{0} {1}\n'.format(
|
|
|
|
|
utterance_id,
|
|
|
|
|
wav_file.replace('c:/', '/mnt/c/').replace('\\', '/'))) # convert path to unix format.
|
|
|
|
|
f_text_file.write('{0}\t{1}\n'.format(utterance_id, df_rec['word'][i].lower()))
|
|
|
|
|
f_utt2spk.write('{0} {1}\n'.format(utterance_id, speaker_id))
|
|
|
|
|
|
|
|
|
|
f_wav_scp.close()
|
|
|
|
|
f_text_file.close()
|
|
|
|
|
f_utt2spk.close()
|
|
|
|
|
|
|
|
|
|
with open(corpus_txt, 'wb') as f:
|
|
|
|
|
f.write(bytes('\n'.join([word.lower() for word in word_list]) + '\n', 'utf-8'))
|
|
|
|
|
|
|
|
|
|
with open(nonsilence_phones_txt, 'wb') as f:
|
|
|
|
|
f.write(bytes('\n'.join(fame_asr.phoneset_short) + '\n', 'utf-8'))
|
|
|
|
|
|
|
|
|
|
with open(silence_phones_txt, 'wb') as f:
|
|
|
|
|
f.write(bytes('sil\nspn\n', 'utf-8'))
|
|
|
|
|
|
|
|
|
|
with open(optional_silence_txt, 'wb') as f:
|
|
|
|
|
f.write(bytes('sil\n', 'utf-8'))
|
|
|
|
|
|
|
|
|
|
with open(os.path.join(kaldi_data_dir, 'conf', 'decode.config'), 'wb') as f:
|
|
|
|
|
f.write(bytes('first_beam=10.0\n', 'utf-8'))
|
|
|
|
|
f.write(bytes('beam=13.0\n', 'utf-8'))
|
|
|
|
|
f.write(bytes('lattice_beam=6.0\n', 'utf-8'))
|
|
|
|
|
|
|
|
|
|
with open(os.path.join(kaldi_data_dir, 'conf', 'mfcc.conf'), 'wb') as f:
|
|
|
|
|
f.write(bytes('--use-energy=false', 'utf-8'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= recognition ======================
|
|
|
|
|
|
|
|
|
|
listdir = glob.glob(os.path.join(feature_dir, '*.mfc'))
|
|
|
|
|
with open(hvite_scp, 'wb') as f:
|
|
|
|
|
f.write(bytes('\n'.join(listdir), 'ascii'))
|
|
|
|
|
|
|
|
|
|
with open(hresult_scp, 'wb') as f:
|
|
|
|
|
f.write(bytes('\n'.join(listdir).replace('.mfc', '.rec'), 'ascii'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# calculate result
|
|
|
|
|
performance = np.zeros((1, 2))
|
|
|
|
|
for niter in range(1, 50):
|
|
|
|
|
output = pyhtk.recognition(
|
|
|
|
|
os.path.join(config_dir, 'config.rec'),
|
|
|
|
|
lattice_file,
|
|
|
|
|
os.path.join(default.htk_dir, 'model', 'hmm1', 'iter' + str(niter), 'hmmdefs'),
|
|
|
|
|
stimmen_dic, phonelist_txt, hvite_scp)
|
|
|
|
|
|
|
|
|
|
output = pyhtk.calc_recognition_performance(
|
|
|
|
|
stimmen_dic, hresult_scp)
|
|
|
|
|
per_sentence, per_word = pyhtk.load_recognition_output_all(output)
|
|
|
|
|
performance_ = np.array([niter, per_sentence['accuracy']]).reshape(1, 2)
|
|
|
|
|
performance = np.r_[performance, performance_]
|
|
|
|
|
print('{0}: {1}[%]'.format(niter, per_sentence['accuracy']))
|
|
|
|
|
|
|
|
|
|
## ======================= make a HTK dic file ======================
|
|
|
|
|
#if make_htk_dic_file:
|
|
|
|
|
# output_type = 3
|
|
|
|
|
dictionary_txt = os.path.join(default.htk_dir, 'lexicon', 'stimmen.dic')
|
|
|
|
|
#for word in word_list:
|
|
|
|
|
word = word_list[2]
|
|
|
|
|
# pronunciation variant of the target word.
|
|
|
|
|
pronunciations = df_test['asr'][df_test['word'].str.match(word)]
|
|
|
|
|
|
|
|
|
|
# make dic file.
|
|
|
|
|
#am_func.make_htk_dict(word, pronvar_, htk_dict_file, output_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= forced alignment using HTK =======================
|
|
|
|
|
if do_forced_alignment_htk:
|
|
|
|
|
|
|
|
|
|
#for hmm_num in [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]:
|
|
|
|
|
for hmm_num in [256, 512, 1024]:
|
|
|
|
|
hmm_num_str = str(hmm_num)
|
|
|
|
|
acoustic_model = os.path.join(acoustic_model_dir, 'hmm' + hmm_num_str + r'-2\hmmdefs')
|
|
|
|
|
|
|
|
|
|
#for hmm_num in [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]:
|
|
|
|
|
for hmm_num in [256, 512, 1024]:
|
|
|
|
|
hmm_num_str = str(hmm_num)
|
|
|
|
|
acoustic_model = os.path.join(acoustic_model_dir, 'hmm' + hmm_num_str + r'-2\hmmdefs')
|
|
|
|
|
|
|
|
|
|
predictions = pd.DataFrame({'filename': [''],
|
|
|
|
|
'word': [''],
|
|
|
|
|
'xsampa': [''],
|
|
|
|
|
'ipa': [''],
|
|
|
|
|
'famehtk': [''],
|
|
|
|
|
'prediction': ['']})
|
|
|
|
|
for i, filename in enumerate(df['filename']):
|
|
|
|
|
print('=== {0}/{1} ==='.format(i, len(df)))
|
|
|
|
|
if (i in df['filename'].keys()) and (isinstance(df['filename'][i], str)):
|
|
|
|
|
wav_file = os.path.join(wav_dir, filename)
|
|
|
|
|
if os.path.exists(wav_file):
|
|
|
|
|
word = df['word'][i]
|
|
|
|
|
WORD = word.upper()
|
|
|
|
|
fa_file = os.path.join(fa_dir, filename.replace('.wav', '.txt') + hmm_num_str)
|
|
|
|
|
|
|
|
|
|
#if not os.path.exists(fa_file):
|
|
|
|
|
# make label file.
|
|
|
|
|
label_file = os.path.join(wav_dir, filename.replace('.wav', '.lab'))
|
|
|
|
|
with open(label_file, 'w') as f:
|
|
|
|
|
lines = f.write(WORD)
|
|
|
|
|
predictions = pd.DataFrame({'filename': [''],
|
|
|
|
|
'word': [''],
|
|
|
|
|
'xsampa': [''],
|
|
|
|
|
'ipa': [''],
|
|
|
|
|
'famehtk': [''],
|
|
|
|
|
'prediction': ['']})
|
|
|
|
|
for i, filename in enumerate(df['filename']):
|
|
|
|
|
print('=== {0}/{1} ==='.format(i, len(df)))
|
|
|
|
|
if (i in df['filename'].keys()) and (isinstance(df['filename'][i], str)):
|
|
|
|
|
wav_file = os.path.join(wav_dir, filename)
|
|
|
|
|
if os.path.exists(wav_file):
|
|
|
|
|
word = df['word'][i]
|
|
|
|
|
WORD = word.upper()
|
|
|
|
|
fa_file = os.path.join(fa_dir, filename.replace('.wav', '.txt') + hmm_num_str)
|
|
|
|
|
|
|
|
|
|
#if not os.path.exists(fa_file):
|
|
|
|
|
# make label file.
|
|
|
|
|
label_file = os.path.join(wav_dir, filename.replace('.wav', '.lab'))
|
|
|
|
|
with open(label_file, 'w') as f:
|
|
|
|
|
lines = f.write(WORD)
|
|
|
|
|
|
|
|
|
|
htk_dict_file = os.path.join(htk_dict_dir, word + '.dic')
|
|
|
|
|
htk_dict_file = os.path.join(htk_dict_dir, word + '.dic')
|
|
|
|
|
|
|
|
|
|
pyhtk.doHVite(wav_file, label_file, htk_dict_file, fa_file, default.config_hvite,
|
|
|
|
|
default.phonelist, acoustic_model)
|
|
|
|
|
os.remove(label_file)
|
|
|
|
|
pyhtk.doHVite(wav_file, label_file, htk_dict_file, fa_file, default.config_hvite,
|
|
|
|
|
default.phonelist, acoustic_model)
|
|
|
|
|
os.remove(label_file)
|
|
|
|
|
|
|
|
|
|
prediction = am_func.read_fileFA(fa_file)
|
|
|
|
|
prediction = am_func.read_fileFA(fa_file)
|
|
|
|
|
|
|
|
|
|
print('{0}: {1} -> {2}'.format(WORD, df['famehtk'][i], prediction))
|
|
|
|
|
else:
|
|
|
|
|
prediction = ''
|
|
|
|
|
print('!!!!! file not found.')
|
|
|
|
|
print('{0}: {1} -> {2}'.format(WORD, df['famehtk'][i], prediction))
|
|
|
|
|
else:
|
|
|
|
|
prediction = ''
|
|
|
|
|
print('!!!!! file not found.')
|
|
|
|
|
|
|
|
|
|
line = pd.Series([df['filename'][i], df['word'][i], df['xsampa'][i], df['ipa'][i], df['famehtk'][i], prediction], index=['filename', 'word', 'xsampa', 'ipa', 'famehtk', 'prediction'], name=i)
|
|
|
|
|
predictions = predictions.append(line)
|
|
|
|
|
else:
|
|
|
|
|
prediction = ''
|
|
|
|
|
print('!!!!! invalid entry.')
|
|
|
|
|
line = pd.Series([df['filename'][i], df['word'][i], df['xsampa'][i], df['ipa'][i], df['famehtk'][i], prediction], index=['filename', 'word', 'xsampa', 'ipa', 'famehtk', 'prediction'], name=i)
|
|
|
|
|
predictions = predictions.append(line)
|
|
|
|
|
else:
|
|
|
|
|
prediction = ''
|
|
|
|
|
print('!!!!! invalid entry.')
|
|
|
|
|
|
|
|
|
|
predictions.to_pickle(os.path.join(result_dir, 'htk', 'predictions_hmm' + hmm_num_str + '.pkl'))
|
|
|
|
|
predictions.to_pickle(os.path.join(result_dir, 'htk', 'predictions_hmm' + hmm_num_str + '.pkl'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= make files which is used for forced alignment by Kaldi =======================
|
|
|
|
|
if make_kaldi_data_files:
|
|
|
|
|
|
|
|
|
|
wav_scp = os.path.join(kaldi_data_dir, 'wav.scp')
|
|
|
|
|
text_file = os.path.join(kaldi_data_dir, 'text')
|
|
|
|
|
utt2spk = os.path.join(kaldi_data_dir, 'utt2spk')
|
|
|
|
|
|
|
|
|
|
# remove previous files.
|
|
|
|
|
if os.path.exists(wav_scp):
|
|
|
|
|
os.remove(wav_scp)
|
|
|
|
|
if os.path.exists(text_file):
|
|
|
|
|
os.remove(text_file)
|
|
|
|
|
if os.path.exists(utt2spk):
|
|
|
|
|
os.remove(utt2spk)
|
|
|
|
|
|
|
|
|
|
f_wav_scp = open(wav_scp, 'a', encoding="utf-8", newline='\n')
|
|
|
|
|
f_text_file = open(text_file, 'a', encoding="utf-8", newline='\n')
|
|
|
|
|
f_utt2spk = open(utt2spk, 'a', encoding="utf-8", newline='\n')
|
|
|
|
|
|
|
|
|
|
# make wav.scp, text, and utt2spk files.
|
|
|
|
|
for i in df.index:
|
|
|
|
|
filename = df['filename'][i]
|
|
|
|
|
print('=== {0}: {1} ==='.format(i, filename))
|
|
|
|
|
|
|
|
|
|
#if (i in df['filename'].keys()) and (isinstance(df['filename'][i], str)):
|
|
|
|
|
wav_file = os.path.join(wav_dir, filename)
|
|
|
|
|
if os.path.exists(wav_file):
|
|
|
|
|
speaker_id = 'speaker_' + str(i).zfill(4)
|
|
|
|
|
utterance_id = filename.replace('.wav', '')
|
|
|
|
|
utterance_id = utterance_id.replace(' ', '_')
|
|
|
|
|
utterance_id = speaker_id + '-' + utterance_id
|
|
|
|
|
|
|
|
|
|
# wav.scp file
|
|
|
|
|
wav_file_unix = wav_file.replace('\\', '/')
|
|
|
|
|
wav_file_unix = wav_file_unix.replace('c:/', '/mnt/c/')
|
|
|
|
|
|
|
|
|
|
f_wav_scp.write('{0} {1}\n'.format(utterance_id, wav_file_unix))
|
|
|
|
|
|
|
|
|
|
# text file
|
|
|
|
|
word = df['word'][i].lower()
|
|
|
|
|
f_text_file.write('{0}\t{1}\n'.format(utterance_id, word))
|
|
|
|
|
|
|
|
|
|
# utt2spk
|
|
|
|
|
f_utt2spk.write('{0} {1}\n'.format(utterance_id, speaker_id))
|
|
|
|
|
|
|
|
|
|
f_wav_scp.close()
|
|
|
|
|
f_text_file.close()
|
|
|
|
|
f_utt2spk.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= make lexicon txt which is used by Kaldi =======================
|
|
|
|
|
if make_kaldi_lexicon_txt:
|
|
|
|
|
option_num = 6
|
|
|
|
|
option_num = 6
|
|
|
|
|
|
|
|
|
|
# remove previous file.
|
|
|
|
|
if os.path.exists(lexicon_txt):
|
|
|
|
|
os.remove(lexicon_txt)
|
|
|
|
|
lexiconp_txt = lexicon_txt.replace('lexicon.txt', 'lexiconp.txt')
|
|
|
|
|
if os.path.exists(lexiconp_txt):
|
|
|
|
|
os.remove(lexiconp_txt)
|
|
|
|
|
|
|
|
|
|
# output lexicon.txt
|
|
|
|
|
f_lexicon_txt = open(lexicon_txt, 'a', encoding="utf-8", newline='\n')
|
|
|
|
|
pronvar_list_all = []
|
|
|
|
|
for word in word_list:
|
|
|
|
|
# remove previous file.
|
|
|
|
|
if os.path.exists(lexicon_txt):
|
|
|
|
|
os.remove(lexicon_txt)
|
|
|
|
|
lexiconp_txt = lexicon_txt.replace('lexicon.txt', 'lexiconp.txt')
|
|
|
|
|
if os.path.exists(lexiconp_txt):
|
|
|
|
|
os.remove(lexiconp_txt)
|
|
|
|
|
|
|
|
|
|
# output lexicon.txt
|
|
|
|
|
f_lexicon_txt = open(lexicon_txt, 'a', encoding="utf-8", newline='\n')
|
|
|
|
|
pronvar_list_all = []
|
|
|
|
|
for word in word_list:
|
|
|
|
|
|
|
|
|
|
# pronunciation variant of the target word.
|
|
|
|
|
pronunciation_variants = df['ipa'][df['word'].str.match(word)]
|
|
|
|
|
# pronunciation variant of the target word.
|
|
|
|
|
pronunciation_variants = df['ipa'][df['word'].str.match(word)]
|
|
|
|
|
|
|
|
|
|
c = Counter(pronunciation_variants)
|
|
|
|
|
total_num = sum(c.values())
|
|
|
|
|
c = Counter(pronunciation_variants)
|
|
|
|
|
total_num = sum(c.values())
|
|
|
|
|
|
|
|
|
|
#with open(result_dir + '\\' + word + '.csv', 'a', encoding="utf-8", newline='\n') as f:
|
|
|
|
|
# for key in c.keys():
|
|
|
|
|
# f.write("{0},{1}\n".format(key,c[key]))
|
|
|
|
|
#with open(result_dir + '\\' + word + '.csv', 'a', encoding="utf-8", newline='\n') as f:
|
|
|
|
|
# for key in c.keys():
|
|
|
|
|
# f.write("{0},{1}\n".format(key,c[key]))
|
|
|
|
|
|
|
|
|
|
for key, value in c.most_common(option_num):
|
|
|
|
|
# make possible pronunciation variant list.
|
|
|
|
|
pronvar_list = am_func.fame_pronunciation_variant(key)
|
|
|
|
|
for key, value in c.most_common(option_num):
|
|
|
|
|
# make possible pronunciation variant list.
|
|
|
|
|
pronvar_list = am_func.fame_pronunciation_variant(key)
|
|
|
|
|
|
|
|
|
|
for pronvar_ in pronvar_list:
|
|
|
|
|
split_ipa = convert_phone_set.split_fame_ipa(pronvar_)
|
|
|
|
|
pronvar_out = ' '.join(split_ipa)
|
|
|
|
|
pronvar_list_all.append([word, pronvar_out])
|
|
|
|
|
for pronvar_ in pronvar_list:
|
|
|
|
|
split_ipa = convert_phone_set.split_fame_ipa(pronvar_)
|
|
|
|
|
pronvar_out = ' '.join(split_ipa)
|
|
|
|
|
pronvar_list_all.append([word, pronvar_out])
|
|
|
|
|
|
|
|
|
|
pronvar_list_all = np.array(pronvar_list_all)
|
|
|
|
|
pronvar_list_all = np.unique(pronvar_list_all, axis=0)
|
|
|
|
|
pronvar_list_all = np.array(pronvar_list_all)
|
|
|
|
|
pronvar_list_all = np.unique(pronvar_list_all, axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# output
|
|
|
|
|
f_lexicon_txt.write('<UNK>\tSPN\n')
|
|
|
|
|
for line in pronvar_list_all:
|
|
|
|
|
f_lexicon_txt.write('{0}\t{1}\n'.format(line[0].lower(), line[1]))
|
|
|
|
|
|
|
|
|
|
# output
|
|
|
|
|
f_lexicon_txt.write('<UNK>\tSPN\n')
|
|
|
|
|
for line in pronvar_list_all:
|
|
|
|
|
f_lexicon_txt.write('{0}\t{1}\n'.format(line[0].lower(), line[1]))
|
|
|
|
|
|
|
|
|
|
f_lexicon_txt.close()
|
|
|
|
|
f_lexicon_txt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= load kaldi forced alignment result =======================
|
|
|
|
|
if load_forced_alignment_kaldi:
|
|
|
|
|
phones_txt = os.path.join(default.kaldi_dir, 'data', 'lang', 'phones.txt')
|
|
|
|
|
merged_alignment_txt = os.path.join(default.kaldi_dir, 'exp', 'tri1_alignme', 'merged_alignment.txt')
|
|
|
|
|
|
|
|
|
|
#filenames = np.load(data_dir + '\\filenames.npy')
|
|
|
|
|
#words = np.load(data_dir + '\\words.npy')
|
|
|
|
|
#pronunciations = np.load(data_dir + '\\pronunciations_ipa.npy')
|
|
|
|
|
#pronvar_list_all = np.load(data_dir + '\\pronvar_list_all.npy')
|
|
|
|
|
#word_list = np.unique(words)
|
|
|
|
|
phones_txt = os.path.join(default.kaldi_dir, 'data', 'lang', 'phones.txt')
|
|
|
|
|
merged_alignment_txt = os.path.join(default.kaldi_dir, 'exp', 'tri1_alignme', 'merged_alignment.txt')
|
|
|
|
|
|
|
|
|
|
#filenames = np.load(data_dir + '\\filenames.npy')
|
|
|
|
|
#words = np.load(data_dir + '\\words.npy')
|
|
|
|
|
#pronunciations = np.load(data_dir + '\\pronunciations_ipa.npy')
|
|
|
|
|
#pronvar_list_all = np.load(data_dir + '\\pronvar_list_all.npy')
|
|
|
|
|
#word_list = np.unique(words)
|
|
|
|
|
|
|
|
|
|
# load the mapping between phones and ids.
|
|
|
|
|
with open(phones_txt, 'r', encoding="utf-8") as f:
|
|
|
|
|
mapping_phone2id = f.read().split('\n')
|
|
|
|
|
# load the mapping between phones and ids.
|
|
|
|
|
with open(phones_txt, 'r', encoding="utf-8") as f:
|
|
|
|
|
mapping_phone2id = f.read().split('\n')
|
|
|
|
|
|
|
|
|
|
phones = []
|
|
|
|
|
phone_ids = [] # ID of phones
|
|
|
|
|
for m in mapping_phone2id:
|
|
|
|
|
m = m.split(' ')
|
|
|
|
|
if len(m) > 1:
|
|
|
|
|
phones.append(m[0])
|
|
|
|
|
phone_ids.append(int(m[1]))
|
|
|
|
|
phones = []
|
|
|
|
|
phone_ids = [] # ID of phones
|
|
|
|
|
for m in mapping_phone2id:
|
|
|
|
|
m = m.split(' ')
|
|
|
|
|
if len(m) > 1:
|
|
|
|
|
phones.append(m[0])
|
|
|
|
|
phone_ids.append(int(m[1]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# load the result of FA.
|
|
|
|
|
with open(merged_alignment_txt, 'r') as f:
|
|
|
|
|
lines = f.read()
|
|
|
|
|
lines = lines.split('\n')
|
|
|
|
|
# load the result of FA.
|
|
|
|
|
with open(merged_alignment_txt, 'r') as f:
|
|
|
|
|
lines = f.read()
|
|
|
|
|
lines = lines.split('\n')
|
|
|
|
|
|
|
|
|
|
predictions = pd.DataFrame({'filename': [''],
|
|
|
|
|
'word': [''],
|
|
|
|
|
'xsampa': [''],
|
|
|
|
|
'ipa': [''],
|
|
|
|
|
'famehtk': [''],
|
|
|
|
|
'prediction': ['']})
|
|
|
|
|
#fa_filenames = []
|
|
|
|
|
#fa_pronunciations = []
|
|
|
|
|
utterance_id_ = ''
|
|
|
|
|
pronunciation = []
|
|
|
|
|
for line in lines:
|
|
|
|
|
line = line.split(' ')
|
|
|
|
|
if len(line) == 5:
|
|
|
|
|
utterance_id = line[0]
|
|
|
|
|
if utterance_id == utterance_id_:
|
|
|
|
|
phone_id = int(line[4])
|
|
|
|
|
#if not phone_id == 1:
|
|
|
|
|
phone_ = phones[phone_ids.index(phone_id)]
|
|
|
|
|
phone = re.sub(r'_[A-Z]', '', phone_)
|
|
|
|
|
if not phone == 'SIL':
|
|
|
|
|
pronunciation.append(phone)
|
|
|
|
|
else:
|
|
|
|
|
filename = re.sub(r'speaker_[0-9]{4}-', '', utterance_id_)
|
|
|
|
|
prediction = ''.join(pronunciation)
|
|
|
|
|
df_ = df[df['filename'].str.match(filename)]
|
|
|
|
|
df_idx = df_.index[0]
|
|
|
|
|
prediction_ = pd.Series([#filename,
|
|
|
|
|
#df_['word'][df_idx],
|
|
|
|
|
#df_['xsampa'][df_idx],
|
|
|
|
|
#df_['ipa'][df_idx],
|
|
|
|
|
#df_['famehtk'][df_idx],
|
|
|
|
|
df_.iloc[0,1],
|
|
|
|
|
df_.iloc[0,3],
|
|
|
|
|
df_.iloc[0,4],
|
|
|
|
|
df_.iloc[0,2],
|
|
|
|
|
df_.iloc[0,0],
|
|
|
|
|
prediction],
|
|
|
|
|
index=['filename', 'word', 'xsampa', 'ipa', 'famehtk', 'prediction'],
|
|
|
|
|
name=df_idx)
|
|
|
|
|
predictions = predictions.append(prediction_)
|
|
|
|
|
#fa_filenames.append()
|
|
|
|
|
#fa_pronunciations.append(' '.join(pronunciation))
|
|
|
|
|
pronunciation = []
|
|
|
|
|
predictions = pd.DataFrame({'filename': [''],
|
|
|
|
|
'word': [''],
|
|
|
|
|
'xsampa': [''],
|
|
|
|
|
'ipa': [''],
|
|
|
|
|
'famehtk': [''],
|
|
|
|
|
'prediction': ['']})
|
|
|
|
|
#fa_filenames = []
|
|
|
|
|
#fa_pronunciations = []
|
|
|
|
|
utterance_id_ = ''
|
|
|
|
|
pronunciation = []
|
|
|
|
|
for line in lines:
|
|
|
|
|
line = line.split(' ')
|
|
|
|
|
if len(line) == 5:
|
|
|
|
|
utterance_id = line[0]
|
|
|
|
|
if utterance_id == utterance_id_:
|
|
|
|
|
phone_id = int(line[4])
|
|
|
|
|
#if not phone_id == 1:
|
|
|
|
|
phone_ = phones[phone_ids.index(phone_id)]
|
|
|
|
|
phone = re.sub(r'_[A-Z]', '', phone_)
|
|
|
|
|
if not phone == 'SIL':
|
|
|
|
|
pronunciation.append(phone)
|
|
|
|
|
else:
|
|
|
|
|
filename = re.sub(r'speaker_[0-9]{4}-', '', utterance_id_)
|
|
|
|
|
prediction = ''.join(pronunciation)
|
|
|
|
|
df_ = df[df['filename'].str.match(filename)]
|
|
|
|
|
df_idx = df_.index[0]
|
|
|
|
|
prediction_ = pd.Series([#filename,
|
|
|
|
|
#df_['word'][df_idx],
|
|
|
|
|
#df_['xsampa'][df_idx],
|
|
|
|
|
#df_['ipa'][df_idx],
|
|
|
|
|
#df_['famehtk'][df_idx],
|
|
|
|
|
df_.iloc[0,1],
|
|
|
|
|
df_.iloc[0,3],
|
|
|
|
|
df_.iloc[0,4],
|
|
|
|
|
df_.iloc[0,2],
|
|
|
|
|
df_.iloc[0,0],
|
|
|
|
|
prediction],
|
|
|
|
|
index=['filename', 'word', 'xsampa', 'ipa', 'famehtk', 'prediction'],
|
|
|
|
|
name=df_idx)
|
|
|
|
|
predictions = predictions.append(prediction_)
|
|
|
|
|
#fa_filenames.append()
|
|
|
|
|
#fa_pronunciations.append(' '.join(pronunciation))
|
|
|
|
|
pronunciation = []
|
|
|
|
|
|
|
|
|
|
utterance_id_ = utterance_id
|
|
|
|
|
predictions.to_pickle(os.path.join(result_dir, 'kaldi', 'predictions.pkl'))
|
|
|
|
|
utterance_id_ = utterance_id
|
|
|
|
|
predictions.to_pickle(os.path.join(result_dir, 'kaldi', 'predictions.pkl'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= evaluate the result of forced alignment =======================
|
|
|
|
|
if eval_forced_alignment_htk:
|
|
|
|
|
htk_dict_dir = os.path.join(default.experiments_dir, 'stimmen', 'dic_short')
|
|
|
|
|
htk_dict_dir = os.path.join(default.experiments_dir, 'stimmen', 'dic_short')
|
|
|
|
|
|
|
|
|
|
compare_hmm_num = 1
|
|
|
|
|
compare_hmm_num = 1
|
|
|
|
|
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result = open(os.path.join(result_dir, 'result.csv'), 'w')
|
|
|
|
|
f_result.write("nmix,Oog,Oog,Oor,Oor,Pauw,Pauw,Reus,Reus,Reuzenrad,Reuzenrad,Roeiboot,Roeiboot,Rozen,Rozen\n")
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result = open(os.path.join(result_dir, 'result.csv'), 'w')
|
|
|
|
|
f_result.write("nmix,Oog,Oog,Oor,Oor,Pauw,Pauw,Reus,Reus,Reuzenrad,Reuzenrad,Roeiboot,Roeiboot,Rozen,Rozen\n")
|
|
|
|
|
|
|
|
|
|
for hmm_num in [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]:
|
|
|
|
|
#for hmm_num in [256]:
|
|
|
|
|
hmm_num_str = str(hmm_num)
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result.write("{},".format(hmm_num_str))
|
|
|
|
|
for hmm_num in [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]:
|
|
|
|
|
#for hmm_num in [256]:
|
|
|
|
|
hmm_num_str = str(hmm_num)
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result.write("{},".format(hmm_num_str))
|
|
|
|
|
|
|
|
|
|
#match = np.load(data_dir + '\\match_hmm' + hmm_num_str + '.npy')
|
|
|
|
|
#prediction = np.load(os.path.join(result_dir, 'htk', 'predictions_hmm' + hmm_num_str + '.npy'))
|
|
|
|
|
#prediction = pd.Series(prediction, index=df.index, name='prediction')
|
|
|
|
|
#result = pd.concat([df, prediction], axis=1)
|
|
|
|
|
result = pd.read_pickle(os.path.join(result_dir, 'htk', 'predictions_hmm' + hmm_num_str + '.pkl'))
|
|
|
|
|
#match = np.load(data_dir + '\\match_hmm' + hmm_num_str + '.npy')
|
|
|
|
|
#prediction = np.load(os.path.join(result_dir, 'htk', 'predictions_hmm' + hmm_num_str + '.npy'))
|
|
|
|
|
#prediction = pd.Series(prediction, index=df.index, name='prediction')
|
|
|
|
|
#result = pd.concat([df, prediction], axis=1)
|
|
|
|
|
result = pd.read_pickle(os.path.join(result_dir, 'htk', 'predictions_hmm' + hmm_num_str + '.pkl'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# load pronunciation variants
|
|
|
|
|
for word in word_list:
|
|
|
|
|
htk_dict_file = os.path.join(htk_dict_dir, word + '.dic')
|
|
|
|
|
with open(htk_dict_file, 'r') as f:
|
|
|
|
|
lines = f.read().split('\n')[:-1]
|
|
|
|
|
pronunciation_variants = [line.split('\t')[1] for line in lines]
|
|
|
|
|
# load pronunciation variants
|
|
|
|
|
for word in word_list:
|
|
|
|
|
htk_dict_file = os.path.join(htk_dict_dir, word + '.dic')
|
|
|
|
|
with open(htk_dict_file, 'r') as f:
|
|
|
|
|
lines = f.read().split('\n')[:-1]
|
|
|
|
|
pronunciation_variants = [line.split('\t')[1] for line in lines]
|
|
|
|
|
|
|
|
|
|
# see only words which appears in top 3.
|
|
|
|
|
result_ = result[result['word'].str.match(word)]
|
|
|
|
|
result_ = result_[result_['famehtk'].isin(pronunciation_variants)]
|
|
|
|
|
# see only words which appears in top 3.
|
|
|
|
|
result_ = result[result['word'].str.match(word)]
|
|
|
|
|
result_ = result_[result_['famehtk'].isin(pronunciation_variants)]
|
|
|
|
|
|
|
|
|
|
match_num = sum(result_['famehtk'] == result_['prediction'])
|
|
|
|
|
total_num = len(result_)
|
|
|
|
|
match_num = sum(result_['famehtk'] == result_['prediction'])
|
|
|
|
|
total_num = len(result_)
|
|
|
|
|
|
|
|
|
|
print("word '{0}': {1}/{2} ({3:.2f} %)".format(word, match_num, total_num, match_num/total_num*100))
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result.write("{0},{1},".format(match_num, total_num))
|
|
|
|
|
else:
|
|
|
|
|
# output confusion matrix
|
|
|
|
|
cm = confusion_matrix(result_['famehtk'], result_['prediction'])
|
|
|
|
|
print("word '{0}': {1}/{2} ({3:.2f} %)".format(word, match_num, total_num, match_num/total_num*100))
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result.write("{0},{1},".format(match_num, total_num))
|
|
|
|
|
else:
|
|
|
|
|
# output confusion matrix
|
|
|
|
|
cm = confusion_matrix(result_['famehtk'], result_['prediction'])
|
|
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
|
plot_confusion_matrix(cm, classes=pronunciation_variants, normalize=False)
|
|
|
|
|
plt.savefig(result_dir + '\\cm_' + word + '.png')
|
|
|
|
|
plt.figure()
|
|
|
|
|
plot_confusion_matrix(cm, classes=pronunciation_variants, normalize=False)
|
|
|
|
|
plt.savefig(result_dir + '\\cm_' + word + '.png')
|
|
|
|
|
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result.write('\n')
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result.write('\n')
|
|
|
|
|
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result.close()
|
|
|
|
|
if compare_hmm_num:
|
|
|
|
|
f_result.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ======================= evaluate the result of forced alignment of kaldi =======================
|
|
|
|
|
if eval_forced_alignment_kaldi:
|
|
|
|
|
result = pd.read_pickle(os.path.join(result_dir, 'kaldi', 'predictions.pkl'))
|
|
|
|
|
result = pd.read_pickle(os.path.join(result_dir, 'kaldi', 'predictions.pkl'))
|
|
|
|
|
|
|
|
|
|
f_result = open(os.path.join(result_dir, 'result.csv'), 'w')
|
|
|
|
|
f_result.write("word,total,valid,match,[%]\n")
|
|
|
|
|
f_result = open(os.path.join(result_dir, 'result.csv'), 'w')
|
|
|
|
|
f_result.write("word,total,valid,match,[%]\n")
|
|
|
|
|
|
|
|
|
|
# load pronunciation variants
|
|
|
|
|
with open(lexicon_txt, 'r', encoding="utf-8", newline='\n') as f:
|
|
|
|
|
lines = f.read().split('\n')[:-1]
|
|
|
|
|
pronunciation_variants_all = [line.split('\t') for line in lines]
|
|
|
|
|
# load pronunciation variants
|
|
|
|
|
with open(lexicon_txt, 'r', encoding="utf-8", newline='\n') as f:
|
|
|
|
|
lines = f.read().split('\n')[:-1]
|
|
|
|
|
pronunciation_variants_all = [line.split('\t') for line in lines]
|
|
|
|
|
|
|
|
|
|
word_list = np.delete(word_list, [0], 0) # remove 'Oog'
|
|
|
|
|
for word in word_list:
|
|
|
|
|
word_list = np.delete(word_list, [0], 0) # remove 'Oog'
|
|
|
|
|
for word in word_list:
|
|
|
|
|
|
|
|
|
|
# load pronunciation variant of the word.
|
|
|
|
|
pronunciation_variants = []
|
|
|
|
|
for line in pronunciation_variants_all:
|
|
|
|
|
if line[0] == word.lower():
|
|
|
|
|
pronunciation_variants.append(line[1].replace(' ', ''))
|
|
|
|
|
# load pronunciation variant of the word.
|
|
|
|
|
pronunciation_variants = []
|
|
|
|
|
for line in pronunciation_variants_all:
|
|
|
|
|
if line[0] == word.lower():
|
|
|
|
|
pronunciation_variants.append(line[1].replace(' ', ''))
|
|
|
|
|
|
|
|
|
|
# see only words which appears in top 3.
|
|
|
|
|
result_ = result[result['word'].str.match(word)]
|
|
|
|
|
result_tolerant = pd.DataFrame({
|
|
|
|
|
'filename': [''],
|
|
|
|
|
'word': [''],
|
|
|
|
|
'xsampa': [''],
|
|
|
|
|
'ipa': [''],
|
|
|
|
|
'prediction': [''],
|
|
|
|
|
'match': ['']})
|
|
|
|
|
# see only words which appears in top 3.
|
|
|
|
|
result_ = result[result['word'].str.match(word)]
|
|
|
|
|
result_tolerant = pd.DataFrame({
|
|
|
|
|
'filename': [''],
|
|
|
|
|
'word': [''],
|
|
|
|
|
'xsampa': [''],
|
|
|
|
|
'ipa': [''],
|
|
|
|
|
'prediction': [''],
|
|
|
|
|
'match': ['']})
|
|
|
|
|
|
|
|
|
|
for i in range(0, len(result_)):
|
|
|
|
|
line = result_.iloc[i]
|
|
|
|
|
for i in range(0, len(result_)):
|
|
|
|
|
line = result_.iloc[i]
|
|
|
|
|
|
|
|
|
|
# make a list of all possible pronunciation variants of ipa description.
|
|
|
|
|
# i.e. possible answers from forced alignment.
|
|
|
|
|
ipa = line['ipa']
|
|
|
|
|
pronvar_list = [ipa]
|
|
|
|
|
pronvar_list_ = am_func.fame_pronunciation_variant(ipa)
|
|
|
|
|
if not pronvar_list_ is None:
|
|
|
|
|
pronvar_list += list(pronvar_list_)
|
|
|
|
|
# make a list of all possible pronunciation variants of ipa description.
|
|
|
|
|
# i.e. possible answers from forced alignment.
|
|
|
|
|
ipa = line['ipa']
|
|
|
|
|
pronvar_list = [ipa]
|
|
|
|
|
pronvar_list_ = am_func.fame_pronunciation_variant(ipa)
|
|
|
|
|
if not pronvar_list_ is None:
|
|
|
|
|
pronvar_list += list(pronvar_list_)
|
|
|
|
|
|
|
|
|
|
# only focus on pronunciations which can be estimated from ipa.
|
|
|
|
|
if len(set(pronvar_list) & set(pronunciation_variants)) > 0:
|
|
|
|
|
if line['prediction'] in pronvar_list:
|
|
|
|
|
ismatch = True
|
|
|
|
|
else:
|
|
|
|
|
ismatch = False
|
|
|
|
|
# only focus on pronunciations which can be estimated from ipa.
|
|
|
|
|
if len(set(pronvar_list) & set(pronunciation_variants)) > 0:
|
|
|
|
|
if line['prediction'] in pronvar_list:
|
|
|
|
|
ismatch = True
|
|
|
|
|
else:
|
|
|
|
|
ismatch = False
|
|
|
|
|
|
|
|
|
|
line_df = pd.DataFrame(result_.iloc[i]).T
|
|
|
|
|
df_idx = line_df.index[0]
|
|
|
|
|
result_tolerant_ = pd.Series([line_df.loc[df_idx, 'filename'],
|
|
|
|
|
line_df.loc[df_idx, 'word'],
|
|
|
|
|
line_df.loc[df_idx, 'xsampa'],
|
|
|
|
|
line_df.loc[df_idx, 'ipa'],
|
|
|
|
|
line_df.loc[df_idx, 'prediction'],
|
|
|
|
|
ismatch],
|
|
|
|
|
index=['filename', 'word', 'xsampa', 'ipa', 'prediction', 'match'],
|
|
|
|
|
name=df_idx)
|
|
|
|
|
result_tolerant = result_tolerant.append(result_tolerant_)
|
|
|
|
|
# remove the first entry (dummy)
|
|
|
|
|
result_tolerant = result_tolerant.drop(0, axis=0)
|
|
|
|
|
line_df = pd.DataFrame(result_.iloc[i]).T
|
|
|
|
|
df_idx = line_df.index[0]
|
|
|
|
|
result_tolerant_ = pd.Series([line_df.loc[df_idx, 'filename'],
|
|
|
|
|
line_df.loc[df_idx, 'word'],
|
|
|
|
|
line_df.loc[df_idx, 'xsampa'],
|
|
|
|
|
line_df.loc[df_idx, 'ipa'],
|
|
|
|
|
line_df.loc[df_idx, 'prediction'],
|
|
|
|
|
ismatch],
|
|
|
|
|
index=['filename', 'word', 'xsampa', 'ipa', 'prediction', 'match'],
|
|
|
|
|
name=df_idx)
|
|
|
|
|
result_tolerant = result_tolerant.append(result_tolerant_)
|
|
|
|
|
# remove the first entry (dummy)
|
|
|
|
|
result_tolerant = result_tolerant.drop(0, axis=0)
|
|
|
|
|
|
|
|
|
|
total_num = len(result_)
|
|
|
|
|
valid_num = len(result_tolerant)
|
|
|
|
|
match_num = np.sum(result_tolerant['match'])
|
|
|
|
|
total_num = len(result_)
|
|
|
|
|
valid_num = len(result_tolerant)
|
|
|
|
|
match_num = np.sum(result_tolerant['match'])
|
|
|
|
|
|
|
|
|
|
print("word '{0}': {1}/{2} ({3:.2f} %) originally {4}".format(word, match_num, valid_num, match_num/valid_num*100, total_num))
|
|
|
|
|
f_result.write("{0},{1},{2},{3},{4}\n".format(word, total_num, valid_num, match_num, match_num/valid_num*100))
|
|
|
|
|
print("word '{0}': {1}/{2} ({3:.2f} %) originally {4}".format(word, match_num, valid_num, match_num/valid_num*100, total_num))
|
|
|
|
|
f_result.write("{0},{1},{2},{3},{4}\n".format(word, total_num, valid_num, match_num, match_num/valid_num*100))
|
|
|
|
|
|
|
|
|
|
f_result.close()
|
|
|
|
|
## output confusion matrix
|
|
|
|
|
#cm = confusion_matrix(result_['ipa'], result_['prediction'])
|
|
|
|
|
f_result.close()
|
|
|
|
|
## output confusion matrix
|
|
|
|
|
#cm = confusion_matrix(result_['ipa'], result_['prediction'])
|
|
|
|
|
|
|
|
|
|
#plt.figure()
|
|
|
|
|
#plot_confusion_matrix(cm, classes=pronunciation_variants, normalize=False)
|
|
|
|
|
#plt.savefig(result_dir + '\\cm_' + word + '.png')
|
|
|
|
|
#plt.figure()
|
|
|
|
|
#plot_confusion_matrix(cm, classes=pronunciation_variants, normalize=False)
|
|
|
|
|
#plt.savefig(result_dir + '\\cm_' + word + '.png')
|
|
|
|
|