Compare commits
3 Commits
e5cf182a18
...
d6d5543d03
Author | SHA1 | Date | |
---|---|---|---|
|
d6d5543d03 | ||
|
d6e005b1cb | ||
|
dd9e3d820b |
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -35,9 +35,15 @@
|
|||||||
<Compile Include="fa_test.py">
|
<Compile Include="fa_test.py">
|
||||||
<SubType>Code</SubType>
|
<SubType>Code</SubType>
|
||||||
</Compile>
|
</Compile>
|
||||||
|
<Compile Include="novoapi_forced_alignment.py">
|
||||||
|
<SubType>Code</SubType>
|
||||||
|
</Compile>
|
||||||
<Compile Include="htk_vs_kaldi.py">
|
<Compile Include="htk_vs_kaldi.py">
|
||||||
<SubType>Code</SubType>
|
<SubType>Code</SubType>
|
||||||
</Compile>
|
</Compile>
|
||||||
|
<Compile Include="novoapi_functions.py">
|
||||||
|
<SubType>Code</SubType>
|
||||||
|
</Compile>
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
<Content Include="config.ini" />
|
<Content Include="config.ini" />
|
||||||
|
@ -16,47 +16,121 @@ import acoustic_model_functions as am_func
|
|||||||
import convert_xsampa2ipa
|
import convert_xsampa2ipa
|
||||||
import defaultfiles as default
|
import defaultfiles as default
|
||||||
|
|
||||||
from forced_alignment import pyhtk
|
from forced_alignment import pyhtk, convert_phone_set
|
||||||
|
|
||||||
import novoapi
|
import novoapi
|
||||||
|
import novoapi_functions
|
||||||
|
|
||||||
## ======================= novo phoneset ======================
|
## ======================= novo phoneset ======================
|
||||||
translation_key = dict()
|
phoneset_ipa, phoneset_novo70, translation_key = novoapi_functions.load_phonset()
|
||||||
|
|
||||||
#phonelist_novo70_ = pd.ExcelFile(default.phonelist_novo70_xlsx)
|
# As per Nederlandse phoneset_aki.xlsx recieved from David
|
||||||
#df = pd.read_excel(phonelist_novo70_, 'list')
|
# [ɔː] oh / ohr
|
||||||
## *_simple includes columns which has only one phone in.
|
# [ɪː] ih / ihr
|
||||||
#for ipa, novo70 in zip(df['IPA_simple'], df['novo70_simple']):
|
# [iː] iy
|
||||||
# if not pd.isnull(ipa):
|
# [œː] uh
|
||||||
# print('{0}:{1}'.format(ipa, novo70))
|
# [ɛː] eh
|
||||||
# translation_key[ipa] = novo70
|
# [w] wv in IPA written as ʋ.
|
||||||
#phonelist_novo70 = np.unique(list(df['novo70_simple']))
|
david_suggestion = ['ɔː', 'ɪː', 'iː', 'œː', 'ɛː', 'w']
|
||||||
|
|
||||||
phoneset_ipa = []
|
|
||||||
phoneset_novo70 = []
|
|
||||||
with open(default.cmu69_phoneset, "rt", encoding="utf-8") as fin:
|
|
||||||
lines = fin.read()
|
|
||||||
lines = lines.split('\n')
|
|
||||||
for line in lines:
|
|
||||||
words = line.split('\t')
|
|
||||||
if len(words) > 1:
|
|
||||||
novo70 = words[0]
|
|
||||||
ipa = words[1]
|
|
||||||
phoneset_ipa.append(ipa)
|
|
||||||
phoneset_novo70.append(novo70)
|
|
||||||
translation_key[ipa] = novo70
|
|
||||||
phoneset_ipa = np.unique(phoneset_ipa)
|
|
||||||
phoneset_novo70 = np.unique(phoneset_novo70)
|
|
||||||
|
|
||||||
|
|
||||||
## ======================= convert phones ======================
|
## ======================= extract words which is written only with novo70 ======================
|
||||||
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', default.ipa_xsampa_converter_dir)
|
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', default.ipa_xsampa_converter_dir)
|
||||||
|
|
||||||
stimmen_transcription_ = pd.ExcelFile(default.stimmen_transcription_xlsx)
|
stimmen_transcription_ = pd.ExcelFile(default.stimmen_transcription_xlsx)
|
||||||
df = pd.read_excel(stimmen_transcription_, 'check')
|
df = pd.read_excel(stimmen_transcription_, 'frequency')
|
||||||
#for xsampa, ipa in zip(df['X-SAMPA'], df['IPA']):
|
#for xsampa, ipa in zip(df['X-SAMPA'], df['IPA']):
|
||||||
# #ipa_converted = convert_xsampa2ipa.conversion('xsampa', 'ipa', mapping, xsampa_)
|
|
||||||
# ipa_converted = convert_xsampa2ipa.xsampa2ipa(mapping, xsampa)
|
# ipa_converted = convert_xsampa2ipa.xsampa2ipa(mapping, xsampa)
|
||||||
# if not ipa_converted == ipa:
|
# if not ipa_converted == ipa:
|
||||||
# print('{0}: {1} - {2}'.format(xsampa, ipa_converted, ipa))
|
# print('{0}: {1} - {2}'.format(xsampa, ipa_converted, ipa))
|
||||||
|
transcription_ipa = list(df['IPA'])
|
||||||
|
|
||||||
|
# transcription mistake?
|
||||||
|
transcription_ipa = [ipa.replace(';', 'ː') for ipa in transcription_ipa if not ipa=='pypɪl' and not pd.isnull(ipa)]
|
||||||
|
transcription_ipa = [ipa.replace('ˑ', '') for ipa in transcription_ipa] # only one case.
|
||||||
|
|
||||||
|
not_in_novo70 = []
|
||||||
|
all_in_novo70 = []
|
||||||
|
for ipa in transcription_ipa:
|
||||||
|
ipa = ipa.replace(':', 'ː')
|
||||||
|
ipa = convert_phone_set.split_ipa(ipa)
|
||||||
|
|
||||||
|
not_in_novo70_ = [phone for phone in ipa
|
||||||
|
if not phone in phoneset_ipa and not phone in david_suggestion]
|
||||||
|
not_in_novo70_ = [phone.replace('sp', '') for phone in not_in_novo70_]
|
||||||
|
not_in_novo70_ = [phone.replace(':', '') for phone in not_in_novo70_]
|
||||||
|
not_in_novo70_ = [phone.replace('ː', '') for phone in not_in_novo70_]
|
||||||
|
|
||||||
|
if len(not_in_novo70_) == 0:
|
||||||
|
all_in_novo70.append(''.join(ipa))
|
||||||
|
|
||||||
|
#translation_key.get(phone, phone)
|
||||||
|
not_in_novo70.extend(not_in_novo70_)
|
||||||
|
not_in_novo70_list = list(set(not_in_novo70))
|
||||||
|
|
||||||
|
## check which phone is used in stimmen but not in novo70
|
||||||
|
# 'ʀ', 'ʁ',
|
||||||
|
# 'ɒ', 'ɐ',
|
||||||
|
# 'o', 'a' (o:, a:?)
|
||||||
|
# [e] 'nyːver mɑntsjə' (1)
|
||||||
|
# [ɾ] 'ɪːɾ'(1)
|
||||||
|
# [ɹ] 'iːjəɹ' (1), 'ɪ:ɹ' (1)
|
||||||
|
# [ø] 'gʀøtəpi:r'(1), 'grøtəpi:r'(1)
|
||||||
|
# [æ] 'røːzəʀæt'(2), 'røːzəræt'(1)
|
||||||
|
# [ʊ] 'ʊ'(1) --> can be ʏ (uh)??
|
||||||
|
# [χ] --> can be x??
|
||||||
|
|
||||||
|
def search_phone_ipa(x, phone_list):
|
||||||
|
x_in_item = []
|
||||||
|
for ipa in phone_list:
|
||||||
|
ipa_original = ipa
|
||||||
|
ipa = ipa.replace(':', 'ː')
|
||||||
|
ipa = convert_phone_set.split_ipa(ipa)
|
||||||
|
if x in ipa and not x+':' in ipa:
|
||||||
|
x_in_item.append(ipa_original)
|
||||||
|
return x_in_item
|
||||||
|
#search_phone_ipa('ø', transcription_ipa)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
df = pd.read_excel(stimmen_transcription_, 'original')
|
||||||
|
|
||||||
|
ipas = []
|
||||||
|
famehtks = []
|
||||||
|
for xsampa in df['Self Xsampa']:
|
||||||
|
if not isinstance(xsampa, float): # 'NaN'
|
||||||
|
# typo?
|
||||||
|
xsampa = xsampa.replace('r2:z@rA:\\t', 'r2:z@rA:t')
|
||||||
|
xsampa = xsampa.replace(';', ':')
|
||||||
|
|
||||||
|
ipa = convert_xsampa2ipa.xsampa2ipa(mapping, xsampa)
|
||||||
|
ipa = ipa.replace('ː', ':')
|
||||||
|
ipa = ipa.replace(' ', '')
|
||||||
|
ipas.append(ipa)
|
||||||
|
else:
|
||||||
|
ipas.append('')
|
||||||
|
|
||||||
|
# extract interesting cols.
|
||||||
|
df = pd.DataFrame({'filename': df['Filename'],
|
||||||
|
'word': df['Word'],
|
||||||
|
'xsampa': df['Self Xsampa'],
|
||||||
|
'ipa': pd.Series(ipas)})
|
||||||
|
|
||||||
|
# find options which all phones are in novo70.
|
||||||
|
#word_list = list(set(df['word']))
|
||||||
|
#word_list = [word for word in word_list if not pd.isnull(word)]
|
||||||
|
#word = word_list[1]
|
||||||
|
|
||||||
|
## pronunciation variants of 'word'
|
||||||
|
#df_ = df[df['word'] == word]['xsampa']
|
||||||
|
##pronunciation_variant = list(set(df_))
|
||||||
|
|
||||||
|
cols = ['word', 'ipa', 'frequency']
|
||||||
|
df_samples = pd.DataFrame(index=[], columns=cols)
|
||||||
|
for ipa in all_in_novo70:
|
||||||
|
ipa = ipa.replace('ː', ':')
|
||||||
|
samples = df[df['ipa'] == ipa]
|
||||||
|
word = list(set(samples['word']))[0]
|
||||||
|
samples_Series = pd.Series([word, ipa, len(samples)], index=df_samples.columns)
|
||||||
|
df_samples = df_samples.append(samples_Series, ignore_index=True)
|
@ -42,4 +42,4 @@ phonelist_friesian_txt = os.path.join(experiments_dir, 'friesian', 'acoustic
|
|||||||
|
|
||||||
novo_api_dir = os.path.join(WSL_dir, 'python-novo-api', 'novoapi')
|
novo_api_dir = os.path.join(WSL_dir, 'python-novo-api', 'novoapi')
|
||||||
#novo_api_dir = r'c:\Python36-32\Lib\site-packages\novoapi'
|
#novo_api_dir = r'c:\Python36-32\Lib\site-packages\novoapi'
|
||||||
cmu69_phoneset = os.path.join(novo_api_dir, 'asr', 'phoneset', 'en', 'cmu69.phoneset')
|
novo70_phoneset = os.path.join(novo_api_dir, 'asr', 'phoneset', 'nl', 'novo70.phoneset')
|
118
acoustic_model/novoapi_forced_alignment.py
Normal file
118
acoustic_model/novoapi_forced_alignment.py
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
#
|
||||||
|
# forced alignment using novo-api.
|
||||||
|
#
|
||||||
|
# *** IMPORTANT ***
|
||||||
|
# This file should be treated as confidencial.
|
||||||
|
# This file should not be copied or uploaded to public sites.
|
||||||
|
#
|
||||||
|
# NOTES:
|
||||||
|
# The usage of novo api: https://bitbucket.org/novolanguage/python-novo-api
|
||||||
|
# I couldn't make it work as I described in the mail to Martijn Bartelds on
|
||||||
|
# 2018/12/03.
|
||||||
|
# As per the advice from him, I modified testgrammer.py and made it a function.
|
||||||
|
#
|
||||||
|
# In order to run on Python 3.6, the following points are changed in novo-api.
|
||||||
|
# (1) backend/__init__.py
|
||||||
|
# - #import session
|
||||||
|
# from . import session
|
||||||
|
# (2) backend/session.py
|
||||||
|
# - #except Exception, e:
|
||||||
|
# except Exception as e:
|
||||||
|
# - #print self.last_message
|
||||||
|
# print(self.last_message)
|
||||||
|
# (3) asr/segment/praat.py
|
||||||
|
# - def print_tier(output, title, begin, end, segs, (format, formatter))
|
||||||
|
# def print_tier(output, title, begin, end, segs, format, formatter):
|
||||||
|
# (4) asr/spraaklab/__init.py
|
||||||
|
# - #import session
|
||||||
|
# from . import session
|
||||||
|
# (5) asr/spraaklab/schema.py
|
||||||
|
# - #print data, "validated not OK", e.message
|
||||||
|
# print("{0} validated not OK {1}".format(data, e.message))
|
||||||
|
# - #print data, "validated OK"
|
||||||
|
# print("{} validated OK".format(data))
|
||||||
|
# - #if isinstance(object, basestring):
|
||||||
|
# if isinstance(object, str)
|
||||||
|
#
|
||||||
|
# Aki Kunikoshi
|
||||||
|
# 428968@gmail.com
|
||||||
|
#
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
|
||||||
|
from novoapi.backend import session
|
||||||
|
import novoapi_functions
|
||||||
|
|
||||||
|
# username / password cannot be passed as artuments...
|
||||||
|
p = argparse.ArgumentParser()
|
||||||
|
#p.add_argument("--user", default=None)
|
||||||
|
#p.add_argument("--password", default=None)
|
||||||
|
p.add_argument("--user", default='martijn.wieling')
|
||||||
|
p.add_argument("--password", default='fa0Thaic')
|
||||||
|
args = p.parse_args()
|
||||||
|
|
||||||
|
wav_file = 'c:\\OneDrive\\WSL\\test\\onetwothree.wav'
|
||||||
|
|
||||||
|
rec = session.Recognizer(grammar_version="1.0", lang="nl", snodeid=101, user=args.user, password=args.password, keepopen=True) # , modeldir=modeldir)
|
||||||
|
grammar = {
|
||||||
|
"type": "confusion_network",
|
||||||
|
"version": "1.0",
|
||||||
|
"data": {
|
||||||
|
"kind": "sequence",
|
||||||
|
"elements": [{
|
||||||
|
"kind": "word",
|
||||||
|
"pronunciation": [{
|
||||||
|
"phones": ["wv",
|
||||||
|
"a1",
|
||||||
|
"n"],
|
||||||
|
"id": 0
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"phones": ["wv",
|
||||||
|
"uh1",
|
||||||
|
"n"],
|
||||||
|
"id": 1
|
||||||
|
}],
|
||||||
|
"label": "one"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"kind": "word",
|
||||||
|
"pronunciation": [{
|
||||||
|
"phones": ["t",
|
||||||
|
"uw1"],
|
||||||
|
"id": 0
|
||||||
|
}],
|
||||||
|
"label": "two"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"kind": "word",
|
||||||
|
"pronunciation": [{
|
||||||
|
"phones": ["t",
|
||||||
|
"r",
|
||||||
|
"iy1"],
|
||||||
|
"id": 0
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"phones": ["s",
|
||||||
|
"r",
|
||||||
|
"iy1"],
|
||||||
|
"id": 1
|
||||||
|
}],
|
||||||
|
"label": "three"
|
||||||
|
}]
|
||||||
|
},
|
||||||
|
"return_objects": ["grammar"],
|
||||||
|
"phoneset": "novo70"
|
||||||
|
}
|
||||||
|
|
||||||
|
res = rec.setgrammar(grammar)
|
||||||
|
#print "Set grammar result", res
|
||||||
|
|
||||||
|
#res = rec.recognize_wav("test/onetwothree.wav")
|
||||||
|
res = rec.recognize_wav(wav_file)
|
||||||
|
#print "Recognition result:", json.dumps(res.export(), indent=4)
|
||||||
|
|
||||||
|
# list of the pronunciation for each words
|
||||||
|
word = 'pauw'
|
||||||
|
pronunciation_ipa = ['pau', 'pɑu']
|
||||||
|
grammar = novoapi_functions.make_grammar(word, pronunciation_ipa)
|
138
acoustic_model/novoapi_functions.py
Normal file
138
acoustic_model/novoapi_functions.py
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import defaultfiles as default
|
||||||
|
|
||||||
|
def load_phonset():
|
||||||
|
translation_key_ipa2novo70 = dict()
|
||||||
|
translation_key_novo702ipa = dict()
|
||||||
|
|
||||||
|
#phonelist_novo70_ = pd.ExcelFile(default.phonelist_novo70_xlsx)
|
||||||
|
#df = pd.read_excel(phonelist_novo70_, 'list')
|
||||||
|
## *_simple includes columns which has only one phone in.
|
||||||
|
#for ipa, novo70 in zip(df['IPA_simple'], df['novo70_simple']):
|
||||||
|
# if not pd.isnull(ipa):
|
||||||
|
# print('{0}:{1}'.format(ipa, novo70))
|
||||||
|
# translation_key[ipa] = novo70
|
||||||
|
#phonelist_novo70 = np.unique(list(df['novo70_simple']))
|
||||||
|
|
||||||
|
phoneset_ipa = []
|
||||||
|
phoneset_novo70 = []
|
||||||
|
with open(default.novo70_phoneset, "rt", encoding="utf-8") as fin:
|
||||||
|
lines = fin.read()
|
||||||
|
lines = lines.split('\n')
|
||||||
|
for line in lines:
|
||||||
|
words = line.split('\t')
|
||||||
|
if len(words) > 1:
|
||||||
|
novo70 = words[0]
|
||||||
|
ipa = words[1]
|
||||||
|
phoneset_ipa.append(ipa)
|
||||||
|
phoneset_novo70.append(novo70)
|
||||||
|
translation_key_ipa2novo70[ipa] = novo70
|
||||||
|
translation_key_novo702ipa[novo70] = ipa
|
||||||
|
phoneset_ipa = np.unique(phoneset_ipa)
|
||||||
|
phoneset_novo70 = np.unique(phoneset_novo70)
|
||||||
|
|
||||||
|
return phoneset_ipa, phoneset_novo70, translation_key_ipa2novo70, translation_key_novo702ipa
|
||||||
|
|
||||||
|
|
||||||
|
def multi_character_tokenize(line, multi_character_tokens):
|
||||||
|
"""
|
||||||
|
Tries to match one of the tokens in multi_character_tokens at each position of line,
|
||||||
|
starting at position 0,
|
||||||
|
if so tokenizes and eats that token. Otherwise tokenizes a single character.
|
||||||
|
|
||||||
|
Copied from forced_alignment.convert_phone_set.py
|
||||||
|
"""
|
||||||
|
while line != '':
|
||||||
|
for token in multi_character_tokens:
|
||||||
|
if line.startswith(token) and len(token) > 0:
|
||||||
|
yield token
|
||||||
|
line = line[len(token):]
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
yield line[:1]
|
||||||
|
line = line[1:]
|
||||||
|
|
||||||
|
|
||||||
|
def split_ipa(line):
|
||||||
|
"""
|
||||||
|
Split a line by IPA phones.
|
||||||
|
If nasalized sound (such as ɛ̃ː) is included, it will give error.
|
||||||
|
:param string line: one line written in IPA.
|
||||||
|
:return string lineSeperated: the line splitted in IPA phone.
|
||||||
|
"""
|
||||||
|
|
||||||
|
multi_character_phones = [
|
||||||
|
# IPAs in CGN.
|
||||||
|
u'ʌu', u'ɛi', u'œy', u'aː', u'eː', u'iː', u'oː', u'øː', u'ɛː', u'œː', u'ɔː', u'ɛ̃ː', u'ɑ̃ː', u'ɔ̃ː', u'œ̃', u'ɪː'
|
||||||
|
]
|
||||||
|
|
||||||
|
return [phone for phone in multi_character_tokenize(line.strip(), multi_character_phones)]
|
||||||
|
|
||||||
|
|
||||||
|
def split_novo70(line):
|
||||||
|
"""
|
||||||
|
Split a line by novo70 phones.
|
||||||
|
:param string line: one line written in novo70.
|
||||||
|
:return string lineSeperated: the line splitted by novo70 phones.
|
||||||
|
"""
|
||||||
|
_, phoneset_novo70, _, _ = load_phonset()
|
||||||
|
multi_character_phones = [p for p in phoneset_novo70 if len(p) > 1]
|
||||||
|
multi_character_phones = sorted(multi_character_phones, key=len, reverse=True)
|
||||||
|
|
||||||
|
return ['sp' if phone == ' ' else phone
|
||||||
|
for phone in multi_character_tokenize(line.strip(), multi_character_phones)]
|
||||||
|
|
||||||
|
|
||||||
|
def novo702ipa(tokens):
|
||||||
|
pronunciation = []
|
||||||
|
_, _, _, translation_key = load_phonset()
|
||||||
|
for phone in split_novo70(tokens):
|
||||||
|
pronunciation.append(translation_key.get(phone, phone))
|
||||||
|
return ' '.join(pronunciation)
|
||||||
|
|
||||||
|
|
||||||
|
# numbering of novo70 should be checked.
|
||||||
|
def ipa2novo70(tokens):
|
||||||
|
pronunciation = []
|
||||||
|
_, _, translation_key, _ = load_phonset()
|
||||||
|
for phone in split_ipa(tokens):
|
||||||
|
pronunciation.append(translation_key.get(phone, phone))
|
||||||
|
return ' '.join(pronunciation)
|
||||||
|
|
||||||
|
|
||||||
|
def make_grammar(word, pronunciation_ipa):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
words
|
||||||
|
pronunciation_ipa: list of pronunciation variants.
|
||||||
|
"""
|
||||||
|
#word = 'pauw'
|
||||||
|
#pronunciation_ipa = ['pau', 'pɑu']
|
||||||
|
|
||||||
|
grammer_data_elements0_pronunciation = []
|
||||||
|
for id, ipa in enumerate(pronunciation_ipa):
|
||||||
|
novo70 = novoapi_functions.ipa2novo70(ipa)
|
||||||
|
grammer_data_elements0_pronunciation.append({
|
||||||
|
"phones": novo70.split(),
|
||||||
|
"id": id
|
||||||
|
})
|
||||||
|
|
||||||
|
grammar_data = {
|
||||||
|
"kind": 'sequence',
|
||||||
|
"elements": [{
|
||||||
|
"kind": "word",
|
||||||
|
"pronunciation": grammer_data_elements0_pronunciation,
|
||||||
|
"label": word
|
||||||
|
}]
|
||||||
|
}
|
||||||
|
|
||||||
|
grammar = {
|
||||||
|
"type": "confusion_network",
|
||||||
|
"version": "1.0",
|
||||||
|
"data": grammar_data,
|
||||||
|
"return_objects": ["grammar"],
|
||||||
|
"phoneset": "novo70"
|
||||||
|
}
|
||||||
|
|
||||||
|
return grammar
|
Loading…
Reference in New Issue
Block a user