commit before migration to habrok
This commit is contained in:
6
code/FROC/__init__.py
Executable file
6
code/FROC/__init__.py
Executable file
@@ -0,0 +1,6 @@
|
||||
from .FROC import image_utils
|
||||
from .FROC import froc
|
||||
from .FROC import data_utils
|
||||
from .FROC import cal_froc_from_np
|
||||
from .FROC import blob_preprocess
|
||||
from .FROC import analysis_utils
|
313
code/FROC/analysis_utils.py
Executable file
313
code/FROC/analysis_utils.py
Executable file
@@ -0,0 +1,313 @@
|
||||
# Copyright 2022 Diagnostic Image Analysis Group, Radboudumc, Nijmegen, The Netherlands
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
from sklearn.metrics import auc
|
||||
from scipy import ndimage
|
||||
|
||||
try:
|
||||
import numpy.typing as npt
|
||||
except ImportError: # pragma: no cover
|
||||
pass
|
||||
|
||||
|
||||
# Parse Detection Maps to Individual Lesions + Likelihoods
|
||||
def parse_detection_map(detection_map):
|
||||
# Label All Non-Connected Components in Detection Map
|
||||
blobs_index, num_blobs = ndimage.label(detection_map, np.ones((3, 3, 3)))
|
||||
|
||||
confidences = []
|
||||
if num_blobs > 0:
|
||||
# For Each Lesion Detection
|
||||
for tumor_index in range(1, num_blobs+1):
|
||||
|
||||
# Extract Mask of Current Lesion
|
||||
# hard_blob = np.zeros_like(blobs_index)
|
||||
# hard_blob[blobs_index == tumor] = 1
|
||||
# TODO: replace above with the following? Is faster I think.
|
||||
# hard_blob = (blobs_index == tumor).astype(int)
|
||||
|
||||
# Extract Max Predicted Likelihood for Lesion Detection
|
||||
# max_prob = np.max(hard_blob) # <- this is always 1
|
||||
# hard_blob[hard_blob > 0] = max_prob # <- this line does nothing, as hard_blob is not used
|
||||
|
||||
# Store Predicted Likelihood per Lesion Detection
|
||||
max_prob = detection_map[blobs_index == tumor_index].max()
|
||||
confidences.append((tumor_index, max_prob))
|
||||
return confidences, blobs_index
|
||||
|
||||
|
||||
# Calculate Dice Similarity Coefficient (DSC) for N-D Arrays
|
||||
def calculate_dsc(predictions: "npt.NDArray[np.float32]", labels: "npt.NDArray[np.int32]") -> float:
|
||||
epsilon = 1e-8
|
||||
dsc_num = np.sum(predictions[labels == 1]) * 2.0
|
||||
dsc_denom = np.sum(predictions) + np.sum(labels)
|
||||
return float((dsc_num + epsilon) / (dsc_denom + epsilon))
|
||||
|
||||
|
||||
# Calculate Intersection over Union (IoU) for N-D Arrays
|
||||
def calculate_iou(predictions: "npt.NDArray[np.float32]", labels: "npt.NDArray[np.int32]") -> float:
|
||||
epsilon = 1e-8
|
||||
iou_num = np.sum(predictions[labels == 1])
|
||||
iou_denom = np.sum(predictions) + np.sum(labels) - iou_num
|
||||
return float((iou_num + epsilon) / (iou_denom + epsilon))
|
||||
|
||||
|
||||
# Calculate Operating Points for Curve
|
||||
def calculate_operating_points(y, x, op_match=None, verbose=1):
|
||||
"""
|
||||
Input:
|
||||
- y: (monotonically increasing) performance metric, such as the True Positive Rate
|
||||
- x: (monotonically increasing) performance metric, such as the False Positive Rate
|
||||
- op_match: dictionary that specifies the target operating point: {
|
||||
'x': target x value, 'y': target y value
|
||||
}
|
||||
|
||||
Returns:
|
||||
- dictionary with operating point(s): {
|
||||
'op_closest_xy_y': y_op, # y value at operating point that matches both x and y of target operating point
|
||||
'op_closest_xy_x': x_op, # x value at operating point that matches both x and y of target operating point
|
||||
...
|
||||
}
|
||||
"""
|
||||
# TODO: currently, a lower sensitivity is preferrred over a higher sensitivity if that means the operating point is matched better.
|
||||
# Would be better to go for the best sensitivity/specificity, if that can be done without hurting the other performance metric.
|
||||
# In practice, this should not be an issue, as we have many points then.
|
||||
y = np.array(y)
|
||||
x = np.array(x)
|
||||
operating_points = {}
|
||||
|
||||
if not np.all(np.diff(y) >= 0) and verbose:
|
||||
print("Warning: y performance metric is not monotonically increasing, this could lead to unexpected behaviour!")
|
||||
if not np.all(np.diff(x) >= 0) and verbose:
|
||||
print("Warning: x performance metric is not monotonically increasing, this could lead to unexpected behaviour!")
|
||||
|
||||
# Grab Index of Intersection -> Compute y/TPR and x/FPR @ Index -> Store
|
||||
op_best_roc_idx = np.argmin(np.abs(y - (1 - x)))
|
||||
op_best_roc_y = y[op_best_roc_idx]
|
||||
op_best_roc_x = x[op_best_roc_idx]
|
||||
operating_points.update(dict(
|
||||
op_best_roc_idx=op_best_roc_idx,
|
||||
op_best_roc_y=op_best_roc_y,
|
||||
op_best_roc_x=op_best_roc_x
|
||||
))
|
||||
|
||||
if op_match is not None:
|
||||
# calculate operating point closest to target operating point
|
||||
abs_deficit_x, abs_deficit_y = None, None
|
||||
optional_x_keys = ['x', 'fpr', 'FPR']
|
||||
optional_y_keys = ['y', 'tpr', 'TPR', 'sensitivity', 'sens']
|
||||
|
||||
# if the target x value is specified, calculate the difference between target and oberved value
|
||||
for key in optional_x_keys:
|
||||
if key in op_match:
|
||||
op_match_x = op_match[key]
|
||||
abs_deficit_x = np.abs(x - op_match_x)
|
||||
break
|
||||
|
||||
# if the target y value is specified, calculate the difference between target and oberved value
|
||||
for key in optional_y_keys:
|
||||
if key in op_match:
|
||||
op_match_y = op_match[key]
|
||||
abs_deficit_y = np.abs(y - op_match_y)
|
||||
break
|
||||
|
||||
# if both target x and y values are specified, calculate the difference between the target pair and observed pair
|
||||
# at the best match, store the observed x and y values
|
||||
if abs_deficit_x is not None and abs_deficit_y is not None:
|
||||
# determine the index of the the closest point to the target pair
|
||||
abs_deficit = abs_deficit_x + abs_deficit_y
|
||||
op_closest_xy_idx = np.argmin(abs_deficit)
|
||||
op_closest_xy_y = y[op_closest_xy_idx]
|
||||
op_closest_xy_x = x[op_closest_xy_idx]
|
||||
|
||||
# store
|
||||
operating_points.update(dict(
|
||||
op_closest_xy_idx=op_closest_xy_idx,
|
||||
op_closest_xy_y=op_closest_xy_y,
|
||||
op_closest_xy_x=op_closest_xy_x
|
||||
))
|
||||
|
||||
# same for matching x only
|
||||
if abs_deficit_x is not None:
|
||||
# determine the index of the the closest point to the target value
|
||||
op_closest_x_idx = np.argmin(abs_deficit_x)
|
||||
op_closest_x_y = y[op_closest_x_idx]
|
||||
op_closest_x_x = x[op_closest_x_idx]
|
||||
|
||||
# store
|
||||
operating_points.update(dict(
|
||||
op_closest_x_idx=op_closest_x_idx,
|
||||
op_closest_x_y=op_closest_x_y,
|
||||
op_closest_x_x=op_closest_x_x
|
||||
))
|
||||
|
||||
# same for matching y only
|
||||
if abs_deficit_y is not None:
|
||||
# determine the index of the the closest point to the target value
|
||||
op_closest_y_idx = np.argmin(abs_deficit_y)
|
||||
op_closest_y_y = y[op_closest_y_idx]
|
||||
op_closest_y_x = x[op_closest_y_idx]
|
||||
|
||||
# store
|
||||
operating_points.update(dict(
|
||||
op_closest_y_idx=op_closest_y_idx,
|
||||
op_closest_y_y=op_closest_y_y,
|
||||
op_closest_y_x=op_closest_y_x
|
||||
))
|
||||
|
||||
return operating_points
|
||||
|
||||
|
||||
# Calculate Statistics for Multiple Curves
|
||||
def calculate_statistics(metrics, op_match=None, x_start=0., x_end=1., verbose=1):
|
||||
"""
|
||||
Calculate statistics, such as the area under the curve, for multiple (independent) curves.
|
||||
To calculate shared statistics, the curves must be translated to a shared x domain. To
|
||||
achieve this with virtually no loss of the step-like nature of curves like ROC and FROC,
|
||||
the shared x values are derived from the input, and offset with ± 1e-7.
|
||||
|
||||
Input:
|
||||
- metrics should be a list of tuples with the y & x coordinates for each run:
|
||||
[([y1, y2, y3, ...], [x1, x2, x3]), # run 1
|
||||
([y1, y2, y3, ...], [x1, x2, x3]), # run 2
|
||||
]
|
||||
- op_match: {
|
||||
'y': value of y metric (e.g., TPR/sensitivity) to match,
|
||||
'x': value of x metric (e.g., FPR/false positive rate) to match,
|
||||
}
|
||||
|
||||
Note: mean and 95% CI are calculated as function of the shared x.
|
||||
"""
|
||||
# construct the array of shared x values
|
||||
eps = 1e-10
|
||||
x_shared = np.array([xi for _, x in metrics for xi in x], dtype=np.float64) # collect list of all possible x-values
|
||||
x_shared = np.ravel(x_shared) # flatten list, if necessary
|
||||
x_shared = np.append(x_shared, [x_start, x_end]) # add x_start and x_end to ensure correct pAUC calculation
|
||||
x_shared = np.concatenate((x_shared+eps, x_shared-eps))
|
||||
x_shared = np.unique(x_shared) # only keep unique x values
|
||||
x_shared.sort() # sort in ascending order (inplace)
|
||||
|
||||
# validate x_start and x_end
|
||||
assert x_start < x_end, f"x_start must be smaller than x_end! Got x_start={x_start} and x_end={x_end}."
|
||||
|
||||
# convert the per-model y (e.g., TPR) vs x (e.g., FPR) to a shared domain
|
||||
y_shared_all = np.zeros(shape=(len(metrics), len(x_shared)), dtype=np.float32)
|
||||
auroc_all = []
|
||||
individually_matched_operating_points = []
|
||||
for i, (y, x) in enumerate(metrics):
|
||||
# if necessary, unpack x and y
|
||||
if len(y) == 1:
|
||||
y = y[0]
|
||||
if len(x) == 1:
|
||||
x = x[0]
|
||||
|
||||
# interpolate the y values to the shared x values
|
||||
y_shared_domain = np.interp(x_shared, x, y)
|
||||
y_shared_all[i] = y_shared_domain
|
||||
|
||||
# calculate AUROC for macro stats
|
||||
mask = (x_shared >= x_start) & (x_shared <= x_end)
|
||||
auc_score = auc(x_shared[mask], y_shared_domain[mask])
|
||||
auroc_all += [auc_score]
|
||||
|
||||
# match operating point for each run individually
|
||||
operating_points = calculate_operating_points(y=y, x=x, op_match=op_match)
|
||||
individually_matched_operating_points += [operating_points]
|
||||
|
||||
# calculate statistics in shared domain
|
||||
y_shared_mean = np.mean(y_shared_all, axis=0)
|
||||
y_shared_std = np.std(y_shared_all, axis=0)
|
||||
y_shared_CI_lower = np.percentile(y_shared_all, 2.5, axis=0)
|
||||
y_shared_CI_higher = np.percentile(y_shared_all, 97.5, axis=0)
|
||||
auroc_mean = np.mean(auroc_all)
|
||||
auroc_std = np.std(auroc_all)
|
||||
|
||||
# calculate operating points in shared domain
|
||||
operating_points = calculate_operating_points(y=y_shared_mean, x=x_shared,
|
||||
op_match=op_match, verbose=verbose)
|
||||
|
||||
# collect results
|
||||
results = {
|
||||
# overview statistics
|
||||
'auroc_mean': auroc_mean,
|
||||
'auroc_std': auroc_std,
|
||||
'auroc_all': auroc_all,
|
||||
|
||||
# for plotting
|
||||
'x_shared': x_shared,
|
||||
'y_shared_all': y_shared_all,
|
||||
'y_shared_mean': y_shared_mean,
|
||||
'y_shared_std': y_shared_std,
|
||||
'y_shared_CI_lower': y_shared_CI_lower,
|
||||
'y_shared_CI_higher': y_shared_CI_higher,
|
||||
|
||||
# individually matched operating point
|
||||
'individually_matched_operating_points': individually_matched_operating_points,
|
||||
}
|
||||
results.update(operating_points)
|
||||
|
||||
# calculate standard deviation of each metric (op_closest_xy_y, etc.) between individual runs
|
||||
individually_matched_operating_points_std = {
|
||||
f"{key}_std": np.std([
|
||||
operating_point_info[key]
|
||||
for operating_point_info in individually_matched_operating_points
|
||||
])
|
||||
for key in individually_matched_operating_points[0].keys()
|
||||
}
|
||||
results.update(individually_matched_operating_points_std)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
# Calculate (partial) Area Under Curve (pAUC) using (x,y) coordinates from the given curve
|
||||
def calculate_pAUC_from_graph(x, y, pAUC_start: float = 0.0, pAUC_end: float = 1.0, full: bool = False):
|
||||
"""
|
||||
Input:
|
||||
For a single curve:
|
||||
- x: x values of a curve (e.g., the False Positive Rate points). [x1, x2, .., xn]
|
||||
- y: y values of a curve (e.g., the True Positive Rate points). [y1, y2, .., yn]
|
||||
|
||||
For multiple curves:
|
||||
- list of x curves, for example the x values observed across multiple runs. [[x1m1, x2m1, .., xnm1], [x1m2, x2m2, ...., xnm2], ..]
|
||||
- list of y curves, for example the y values observed across multiple runs. [[y1m1, y2m1, .., ynm1], [y1m2, y2m2, ...., ynm2], ..]
|
||||
|
||||
- pAUC_start: lower bound of x (e.g., FPR) to compute pAUC
|
||||
- pAUC_end: higher bound of x (e.g., FPR) to compute pAUC
|
||||
|
||||
Returns:
|
||||
- if (full==False): List of pAUC values for each set of ([x1, ..], [y1, ..]) coordinates
|
||||
- if (full==True): Metrics as returned by `calculate_statistics` [see there]
|
||||
|
||||
Note: function is not specific to the FROC curve
|
||||
"""
|
||||
|
||||
if not isinstance(x[0], (list, np.ndarray)) or not isinstance(y[0], (list, np.ndarray)):
|
||||
# Have a single set of (x,y) coordinates
|
||||
|
||||
assert not isinstance(x[0], (list, np.ndarray)) and not isinstance(y[0], (list, np.ndarray)), \
|
||||
"Either provide multiple sequences of (x,y) coordinates, or a single sequence. Obtained a mix of both now. "
|
||||
|
||||
# Pack coordinates in format expected by `calculate_statistics`
|
||||
coordinates_joined = [(y, x)]
|
||||
else:
|
||||
# Have multiple sets of (x,y) coordinates
|
||||
# Pack coordinates in format expected by `calculate_statistics`
|
||||
coordinates_joined = list(zip(y, x))
|
||||
|
||||
# Calculate AUC in Given Ranges
|
||||
results = calculate_statistics(metrics=coordinates_joined, x_start=pAUC_start, x_end=pAUC_end)
|
||||
if full:
|
||||
return results
|
||||
return results['auroc_all']
|
148
code/FROC/blob_preprocess.py
Executable file
148
code/FROC/blob_preprocess.py
Executable file
@@ -0,0 +1,148 @@
|
||||
import numpy as np
|
||||
from scipy import ndimage
|
||||
from typing import List, Tuple, Optional, Union
|
||||
|
||||
"""
|
||||
Extract lesion candidates from a softmax prediction
|
||||
Authors: anindox8, matinhz, joeranbosma
|
||||
"""
|
||||
|
||||
|
||||
# Preprocess Softmax Volume (Clipping, Max Confidence)
|
||||
def preprocess_softmax_static(softmax: np.ndarray,
|
||||
threshold: float = 0.10,
|
||||
min_voxels_detection: int = 10,
|
||||
max_prob_round_decimals: Optional[int] = 4) -> Tuple[np.ndarray, List[Tuple[int, float]], np.ndarray]:
|
||||
# Load and Preprocess Softmax Image
|
||||
all_hard_blobs = np.zeros_like(softmax)
|
||||
confidences = []
|
||||
clipped_softmax = softmax.copy()
|
||||
clipped_softmax[softmax < threshold] = 0
|
||||
blobs_index, num_blobs = ndimage.label(clipped_softmax, np.ones((3, 3, 3)))
|
||||
|
||||
if num_blobs > 0: # For Each Prediction
|
||||
for tumor in range(1, num_blobs+1):
|
||||
# determine mask for current lesion
|
||||
hard_mask = np.zeros_like(blobs_index)
|
||||
hard_mask[blobs_index == tumor] = 1
|
||||
|
||||
if np.count_nonzero(hard_mask) <= min_voxels_detection:
|
||||
# remove tiny detection of <= 0.009 cm^3
|
||||
blobs_index[hard_mask.astype(bool)] = 0
|
||||
continue
|
||||
|
||||
# add sufficiently sized detection
|
||||
hard_blob = hard_mask * clipped_softmax
|
||||
max_prob = np.max(hard_blob)
|
||||
if max_prob_round_decimals is not None:
|
||||
max_prob = np.round(max_prob, max_prob_round_decimals)
|
||||
hard_blob[hard_blob > 0] = max_prob
|
||||
all_hard_blobs += hard_blob
|
||||
confidences.append((tumor, max_prob))
|
||||
return all_hard_blobs, confidences, blobs_index
|
||||
|
||||
|
||||
def preprocess_softmax_dynamic(softmax: np.ndarray,
|
||||
min_voxels_detection: int = 10,
|
||||
num_lesions_to_extract: int = 5,
|
||||
dynamic_threshold_factor: float = 2.5,
|
||||
max_prob_round_decimals: Optional[int] = None,
|
||||
remove_adjacent_lesion_candidates: bool = True,
|
||||
max_prob_failsafe_stopping_threshold: float = 0.01) -> Tuple[np.ndarray, List[Tuple[int, float]], np.ndarray]:
|
||||
"""
|
||||
Generate detection proposals using a dynamic threshold to determine the location and size of lesions.
|
||||
Author: Joeran Bosma
|
||||
"""
|
||||
working_softmax = softmax.copy()
|
||||
dynamic_hard_blobs = np.zeros_like(softmax)
|
||||
confidences: List[Tuple[int, float]] = []
|
||||
dynamic_indexed_blobs = np.zeros_like(softmax, dtype=int)
|
||||
|
||||
while len(confidences) < num_lesions_to_extract:
|
||||
tumor_index = 1 + len(confidences)
|
||||
|
||||
# determine max. softmax
|
||||
max_prob = np.max(working_softmax)
|
||||
|
||||
if max_prob < max_prob_failsafe_stopping_threshold:
|
||||
break
|
||||
|
||||
# set dynamic threshold to half the max
|
||||
threshold = max_prob / dynamic_threshold_factor
|
||||
|
||||
# extract blobs for dynamix threshold
|
||||
all_hard_blobs, _, _ = preprocess_softmax_static(working_softmax, threshold=threshold,
|
||||
min_voxels_detection=min_voxels_detection,
|
||||
max_prob_round_decimals=max_prob_round_decimals)
|
||||
|
||||
# select blob with max. confidence
|
||||
# note: the max_prob is re-computed in the (unlikely) case that the max. prob
|
||||
# was inside a 'lesion candidate' of less than min_voxels_detection, which is
|
||||
# thus removed in preprocess_softmax_static.
|
||||
max_prob = np.max(all_hard_blobs)
|
||||
mask_current_lesion = (all_hard_blobs == max_prob)
|
||||
|
||||
# ensure that mask is only a single lesion candidate (this assumption fails when multiple lesions have the same max. prob)
|
||||
mask_current_lesion_indexed, _ = ndimage.label(mask_current_lesion, np.ones((3, 3, 3)))
|
||||
mask_current_lesion = (mask_current_lesion_indexed == 1)
|
||||
|
||||
# create mask with its confidence
|
||||
hard_blob = (all_hard_blobs * mask_current_lesion)
|
||||
|
||||
# Detect whether the extractted mask is a ring/hollow sphere
|
||||
# around an existing lesion candidate. For confident lesions,
|
||||
# the surroundings of the prediction are still quite confident,
|
||||
# and can become a second 'detection'. For an # example, please
|
||||
# see extracted lesion candidates nr. 4 and 5 at:
|
||||
# https://repos.diagnijmegen.nl/trac/ticket/9299#comment:49
|
||||
# Detection method: grow currently extracted lesions by one voxel,
|
||||
# and check if they overlap with the current extracted lesion.
|
||||
extracted_lesions_grown = ndimage.morphology.binary_dilation(dynamic_hard_blobs > 0)
|
||||
current_lesion_has_overlap = (mask_current_lesion & extracted_lesions_grown).any()
|
||||
|
||||
# Check if lesion candidate should be retained
|
||||
if (not remove_adjacent_lesion_candidates) or (not current_lesion_has_overlap):
|
||||
# store extracted lesion
|
||||
dynamic_hard_blobs += hard_blob
|
||||
confidences += [(tumor_index, max_prob)]
|
||||
dynamic_indexed_blobs += (mask_current_lesion * tumor_index)
|
||||
|
||||
# remove extracted lesion from working-softmax
|
||||
working_softmax = (working_softmax * (~mask_current_lesion))
|
||||
|
||||
return dynamic_hard_blobs, confidences, dynamic_indexed_blobs
|
||||
|
||||
|
||||
def preprocess_softmax(softmax: np.ndarray,
|
||||
threshold: Union[str, float] = 0.10,
|
||||
min_voxels_detection: int = 10,
|
||||
num_lesions_to_extract: int = 5,
|
||||
dynamic_threshold_factor: float = 2.5,
|
||||
max_prob_round_decimals: Optional[int] = None,
|
||||
remove_adjacent_lesion_candidates: bool = True) -> Tuple[np.ndarray, List[Tuple[int, float]], np.ndarray]:
|
||||
"""
|
||||
Generate detection proposals using a dynamic or static threshold to determine the size of lesions.
|
||||
"""
|
||||
if threshold == 'dynamic':
|
||||
all_hard_blobs, confidences, indexed_pred = preprocess_softmax_dynamic(softmax, min_voxels_detection=min_voxels_detection,
|
||||
dynamic_threshold_factor=dynamic_threshold_factor,
|
||||
num_lesions_to_extract=num_lesions_to_extract,
|
||||
remove_adjacent_lesion_candidates=remove_adjacent_lesion_candidates,
|
||||
max_prob_round_decimals=max_prob_round_decimals)
|
||||
elif threshold == 'dynamic-fast':
|
||||
# determine max. softmax and set a per-case 'static' threshold based on that
|
||||
max_prob = np.max(softmax)
|
||||
threshold = float(max_prob / dynamic_threshold_factor)
|
||||
all_hard_blobs, confidences, indexed_pred = preprocess_softmax_static(softmax, threshold=threshold,
|
||||
min_voxels_detection=min_voxels_detection,
|
||||
max_prob_round_decimals=max_prob_round_decimals)
|
||||
else:
|
||||
threshold = float(threshold) # convert threshold to float, if it wasn't already
|
||||
all_hard_blobs, confidences, indexed_pred = preprocess_softmax_static(softmax, threshold=threshold,
|
||||
min_voxels_detection=min_voxels_detection,
|
||||
max_prob_round_decimals=max_prob_round_decimals)
|
||||
|
||||
|
||||
|
||||
|
||||
return all_hard_blobs, confidences, indexed_pred
|
643
code/FROC/cal_froc_from_np.py
Executable file
643
code/FROC/cal_froc_from_np.py
Executable file
@@ -0,0 +1,643 @@
|
||||
import argparse
|
||||
import multiprocessing
|
||||
import numpy as np
|
||||
import SimpleITK as sitk
|
||||
import time
|
||||
import os
|
||||
import itertools
|
||||
import concurrent.futures
|
||||
|
||||
from typing import List
|
||||
import sys
|
||||
sys.path.append('./../code')
|
||||
from utils_quintin import *
|
||||
|
||||
# from fastMRI_PCa.visualization.visualize import write_array2nifti_t2
|
||||
from tensorflow.keras.models import load_model
|
||||
from functools import partial
|
||||
from focal_loss import BinaryFocalLoss
|
||||
from scipy import ndimage
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from sklearn.metrics import roc_curve, auc
|
||||
|
||||
# from fastMRI_PCa.visualization import save_slice_3d
|
||||
# from fastMRI_PCa.utils import read_yaml_to_dict, list_from_file, print_stats_np
|
||||
# from fastMRI_PCa.utils import print_p, get_rand_exp_decay_mask
|
||||
# from fastMRI_PCa.data import resample, center_crop, normalize, undersample, binarize_s
|
||||
# from fastMRI_PCa.models import ssim_loss, ssim_metric, psnr_metric
|
||||
|
||||
from typing import List, Tuple, Dict, Any, Union, Optional, Callable, Iterable, Hashable, Sized
|
||||
|
||||
try:
|
||||
import numpy.typing as npt
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
|
||||
############################### PREPROCESSING BLOBS #########################
|
||||
"""
|
||||
Extract lesion candidates from a softmax prediction
|
||||
Authors: anindox8, matinhz, joeranbosma
|
||||
"""
|
||||
|
||||
|
||||
# Preprocess Softmax Volume (Clipping, Max Confidence)
|
||||
def preprocess_softmax_static(softmax: np.ndarray,
|
||||
threshold: float = 0.10,
|
||||
min_voxels_detection: int = 10,
|
||||
max_prob_round_decimals: Optional[int] = 4) -> Tuple[np.ndarray, List[Tuple[int, float]], np.ndarray]:
|
||||
# Load and Preprocess Softmax Image
|
||||
all_hard_blobs = np.zeros_like(softmax)
|
||||
confidences = []
|
||||
clipped_softmax = softmax.copy()
|
||||
clipped_softmax[softmax < threshold] = 0
|
||||
blobs_index, num_blobs = ndimage.label(clipped_softmax, np.ones((3, 3, 3)))
|
||||
|
||||
if num_blobs > 0: # For Each Prediction
|
||||
for tumor in range(1, num_blobs+1):
|
||||
# determine mask for current lesion
|
||||
hard_mask = np.zeros_like(blobs_index)
|
||||
hard_mask[blobs_index == tumor] = 1
|
||||
|
||||
if np.count_nonzero(hard_mask) <= min_voxels_detection:
|
||||
# remove tiny detection of <= 0.009 cm^3
|
||||
blobs_index[hard_mask.astype(bool)] = 0
|
||||
continue
|
||||
|
||||
# add sufficiently sized detection
|
||||
hard_blob = hard_mask * clipped_softmax
|
||||
max_prob = np.max(hard_blob)
|
||||
if max_prob_round_decimals is not None:
|
||||
max_prob = np.round(max_prob, max_prob_round_decimals)
|
||||
hard_blob[hard_blob > 0] = max_prob
|
||||
all_hard_blobs += hard_blob
|
||||
confidences.append((tumor, max_prob))
|
||||
return all_hard_blobs, confidences, blobs_index
|
||||
|
||||
|
||||
def preprocess_softmax_dynamic(softmax: np.ndarray,
|
||||
min_voxels_detection: int = 10,
|
||||
num_lesions_to_extract: int = 5,
|
||||
dynamic_threshold_factor: float = 2.5,
|
||||
max_prob_round_decimals: Optional[int] = None,
|
||||
remove_adjacent_lesion_candidates: bool = True,
|
||||
max_prob_failsafe_stopping_threshold: float = 0.01) -> Tuple[np.ndarray, List[Tuple[int, float]], np.ndarray]:
|
||||
"""
|
||||
Generate detection proposals using a dynamic threshold to determine the location and size of lesions.
|
||||
Author: Joeran Bosma
|
||||
"""
|
||||
working_softmax = softmax.copy()
|
||||
dynamic_hard_blobs = np.zeros_like(softmax)
|
||||
confidences: List[Tuple[int, float]] = []
|
||||
dynamic_indexed_blobs = np.zeros_like(softmax, dtype=int)
|
||||
|
||||
while len(confidences) < num_lesions_to_extract:
|
||||
tumor_index = 1 + len(confidences)
|
||||
|
||||
# determine max. softmax
|
||||
max_prob = np.max(working_softmax)
|
||||
|
||||
if max_prob < max_prob_failsafe_stopping_threshold:
|
||||
break
|
||||
|
||||
# set dynamic threshold to half the max
|
||||
threshold = max_prob / dynamic_threshold_factor
|
||||
|
||||
# extract blobs for dynamix threshold
|
||||
all_hard_blobs, _, _ = preprocess_softmax_static(working_softmax, threshold=threshold,
|
||||
min_voxels_detection=min_voxels_detection,
|
||||
max_prob_round_decimals=max_prob_round_decimals)
|
||||
|
||||
# select blob with max. confidence
|
||||
# note: the max_prob is re-computed in the (unlikely) case that the max. prob
|
||||
# was inside a 'lesion candidate' of less than min_voxels_detection, which is
|
||||
# thus removed in preprocess_softmax_static.
|
||||
max_prob = np.max(all_hard_blobs)
|
||||
mask_current_lesion = (all_hard_blobs == max_prob)
|
||||
|
||||
# ensure that mask is only a single lesion candidate (this assumption fails when multiple lesions have the same max. prob)
|
||||
mask_current_lesion_indexed, _ = ndimage.label(mask_current_lesion, np.ones((3, 3, 3)))
|
||||
mask_current_lesion = (mask_current_lesion_indexed == 1)
|
||||
|
||||
# create mask with its confidence
|
||||
hard_blob = (all_hard_blobs * mask_current_lesion)
|
||||
|
||||
# Detect whether the extractted mask is a ring/hollow sphere
|
||||
# around an existing lesion candidate. For confident lesions,
|
||||
# the surroundings of the prediction are still quite confident,
|
||||
# and can become a second 'detection'. For an # example, please
|
||||
# see extracted lesion candidates nr. 4 and 5 at:
|
||||
# https://repos.diagnijmegen.nl/trac/ticket/9299#comment:49
|
||||
# Detection method: grow currently extracted lesions by one voxel,
|
||||
# and check if they overlap with the current extracted lesion.
|
||||
extracted_lesions_grown = ndimage.morphology.binary_dilation(dynamic_hard_blobs > 0)
|
||||
current_lesion_has_overlap = (mask_current_lesion & extracted_lesions_grown).any()
|
||||
|
||||
# Check if lesion candidate should be retained
|
||||
if (not remove_adjacent_lesion_candidates) or (not current_lesion_has_overlap):
|
||||
# store extracted lesion
|
||||
dynamic_hard_blobs += hard_blob
|
||||
confidences += [(tumor_index, max_prob)]
|
||||
dynamic_indexed_blobs += (mask_current_lesion * tumor_index)
|
||||
|
||||
# remove extracted lesion from working-softmax
|
||||
working_softmax = (working_softmax * (~mask_current_lesion))
|
||||
|
||||
return dynamic_hard_blobs, confidences, dynamic_indexed_blobs
|
||||
|
||||
|
||||
def preprocess_softmax(softmax: np.ndarray,
|
||||
threshold: Union[str, float] = 0.10,
|
||||
min_voxels_detection: int = 10,
|
||||
num_lesions_to_extract: int = 5,
|
||||
dynamic_threshold_factor: float = 2.5,
|
||||
max_prob_round_decimals: Optional[int] = None,
|
||||
remove_adjacent_lesion_candidates: bool = True) -> Tuple[np.ndarray, List[Tuple[int, float]], np.ndarray]:
|
||||
"""
|
||||
Generate detection proposals using a dynamic or static threshold to determine the size of lesions.
|
||||
"""
|
||||
if threshold == 'dynamic':
|
||||
all_hard_blobs, confidences, indexed_pred = preprocess_softmax_dynamic(softmax, min_voxels_detection=min_voxels_detection,
|
||||
dynamic_threshold_factor=dynamic_threshold_factor,
|
||||
num_lesions_to_extract=num_lesions_to_extract,
|
||||
remove_adjacent_lesion_candidates=remove_adjacent_lesion_candidates,
|
||||
max_prob_round_decimals=max_prob_round_decimals)
|
||||
elif threshold == 'dynamic-fast':
|
||||
# determine max. softmax and set a per-case 'static' threshold based on that
|
||||
max_prob = np.max(softmax)
|
||||
threshold = float(max_prob / dynamic_threshold_factor)
|
||||
all_hard_blobs, confidences, indexed_pred = preprocess_softmax_static(softmax, threshold=threshold,
|
||||
min_voxels_detection=min_voxels_detection,
|
||||
max_prob_round_decimals=max_prob_round_decimals)
|
||||
else:
|
||||
threshold = float(threshold) # convert threshold to float, if it wasn't already
|
||||
all_hard_blobs, confidences, indexed_pred = preprocess_softmax_static(softmax, threshold=threshold,
|
||||
min_voxels_detection=min_voxels_detection,
|
||||
max_prob_round_decimals=max_prob_round_decimals)
|
||||
|
||||
return all_hard_blobs, confidences, indexed_pred
|
||||
|
||||
|
||||
################################################################################
|
||||
|
||||
|
||||
# Evaluate all cases
|
||||
def evaluate(
|
||||
y_true: np.ndarray,
|
||||
y_pred: np.ndarray,
|
||||
min_overlap=0.10,
|
||||
overlap_func: str = 'DSC',
|
||||
case_confidence: str = 'max',
|
||||
multiple_lesion_candidates_selection_criteria='overlap',
|
||||
allow_unmatched_candidates_with_minimal_overlap=True,
|
||||
flat: Optional[bool] = None
|
||||
) -> Dict[str, Any]:
|
||||
|
||||
# Make list out of numpy array so that it can be mapped in parallel with multiple CPUs.
|
||||
y_true_list = y_true #[y_true[mri_idx] for mri_idx in range(y_true.shape[0])]
|
||||
y_pred_list = y_pred #[y_pred[mri_idx] for mri_idx in range(y_pred.shape[0])]
|
||||
|
||||
roc_true, roc_pred = {}, {}
|
||||
y_list = []
|
||||
num_lesions = 0
|
||||
|
||||
subject_idxs = list(range(len(y_true_list)))
|
||||
N_CPUS = 2
|
||||
with ThreadPoolExecutor(max_workers=N_CPUS) as pool:
|
||||
# define the functions that need to be processed: compute_pred_vector, with each individual
|
||||
# detection_map prediction, ground truth label and parameters
|
||||
future_to_args = {
|
||||
pool.submit(evaluate_case,
|
||||
y_true,
|
||||
y_pred,
|
||||
min_overlap=min_overlap,
|
||||
overlap_func=overlap_func,
|
||||
multiple_lesion_candidates_selection_criteria=multiple_lesion_candidates_selection_criteria,
|
||||
allow_unmatched_candidates_with_minimal_overlap=allow_unmatched_candidates_with_minimal_overlap): idx
|
||||
for (y_true, y_pred, idx) in zip(y_true_list, y_pred_list, subject_idxs)
|
||||
}
|
||||
|
||||
# process the cases in parallel
|
||||
iterator = concurrent.futures.as_completed(future_to_args)
|
||||
iterator = tqdm(iterator, desc='Computing FROC', total=len(y_true_list))
|
||||
for future in iterator:
|
||||
try:
|
||||
res = future.result()
|
||||
except Exception as e:
|
||||
print(f"Exception: {e}")
|
||||
else:
|
||||
# unpack results
|
||||
y_list_pat, num_lesions_gt = res
|
||||
# note: y_list_pat contains: is_lesion, confidence[, Dice, gt num voxels]
|
||||
|
||||
# aggregate results
|
||||
idx = future_to_args[future]
|
||||
roc_true[idx] = np.max([a[0] for a in y_list_pat])
|
||||
if case_confidence == 'max':
|
||||
# take highest lesion confidence as case-level confidence
|
||||
roc_pred[idx] = np.max([a[1] for a in y_list_pat])
|
||||
elif case_confidence == 'bayesian':
|
||||
# if a_i is the probability the i-th lesion is csPCa, then the case-level
|
||||
# probability to have any csPCa lesion is 1 - Π_i{ 1 - a_i}
|
||||
roc_pred[idx] = 1 - np.prod([(1-a[1]) for a in y_list_pat])
|
||||
else:
|
||||
raise ValueError(f"Patient confidence calculation method not recognised. Got: {case_confidence}.")
|
||||
|
||||
# accumulate outputs
|
||||
y_list += y_list_pat
|
||||
num_lesions += num_lesions_gt
|
||||
|
||||
# calculate statistics
|
||||
num_patients = len(roc_true)
|
||||
|
||||
# get lesion-level results
|
||||
sensitivity, FP_per_case, thresholds, num_lesions = froc_from_lesion_evaluations(
|
||||
y_list=y_list, num_patients=num_patients
|
||||
)
|
||||
|
||||
# calculate recall, precision and average precision
|
||||
AP, precision, recall, _ = ap_from_lesion_evaluations(y_list, thresholds=thresholds)
|
||||
|
||||
# calculate case-level AUROC
|
||||
fpr, tpr, _ = roc_curve(y_true=[roc_true[s] for s in subject_idxs],
|
||||
y_score=[roc_pred[s] for s in subject_idxs],
|
||||
pos_label=1)
|
||||
auc_score = auc(fpr, tpr)
|
||||
|
||||
flat = True
|
||||
if flat:
|
||||
# flatten roc_true and roc_pred
|
||||
roc_true_flat = [roc_true[s] for s in subject_idxs]
|
||||
roc_pred_flat = [roc_pred[s] for s in subject_idxs]
|
||||
|
||||
metrics = {
|
||||
"FP_per_case": convert_np_to_list(FP_per_case),
|
||||
"sensitivity": convert_np_to_list(sensitivity),
|
||||
"thresholds": convert_np_to_list(thresholds),
|
||||
"num_lesions": int(num_lesions),
|
||||
"num_patients": int(num_patients),
|
||||
"roc_true": convert_np_to_list(roc_true_flat if flat else roc_true),
|
||||
"roc_pred": convert_np_to_list(roc_pred_flat if flat else roc_pred),
|
||||
"AP": float(AP),
|
||||
"precision": convert_np_to_list(precision),
|
||||
"recall": convert_np_to_list(recall),
|
||||
|
||||
# patient-level predictions
|
||||
'auroc': float(auc_score),
|
||||
'tpr': convert_np_to_list(tpr),
|
||||
'fpr': convert_np_to_list(fpr),
|
||||
}
|
||||
|
||||
return metrics
|
||||
|
||||
|
||||
def convert_np_to_list(flat_numpy_arr):
|
||||
ans = []
|
||||
for elem in flat_numpy_arr:
|
||||
ans.append(float(elem))
|
||||
return ans
|
||||
|
||||
|
||||
# Calculate FROC metrics (FP rate, sensitivity)
|
||||
def froc_from_lesion_evaluations(y_list, num_patients, thresholds=None):
|
||||
# calculate counts
|
||||
TP, FP, thresholds, num_lesions = counts_from_lesion_evaluations(
|
||||
y_list=y_list, thresholds=thresholds
|
||||
)
|
||||
|
||||
# calculate FROC metrics from counts
|
||||
sensitivity = TP / num_lesions if num_lesions > 0 else np.nan
|
||||
FP_per_case = FP / num_patients
|
||||
|
||||
return sensitivity, FP_per_case, thresholds, num_lesions
|
||||
|
||||
|
||||
def ap_from_lesion_evaluations(y_list, thresholds=None):
|
||||
# calculate counts
|
||||
TP, FP, thresholds, num_lesions = counts_from_lesion_evaluations(
|
||||
y_list=y_list, thresholds=thresholds
|
||||
)
|
||||
|
||||
# calculate precision (lesion-level)
|
||||
precision = TP / (TP + FP)
|
||||
precision = np.append(precision, [0])
|
||||
|
||||
# calculate recall (lesion-level)
|
||||
FN = num_lesions - TP
|
||||
recall = TP / (TP + FN)
|
||||
recall = np.append(recall, recall[-1:])
|
||||
|
||||
# calculate average precission (lesion-level)
|
||||
AP = np.trapz(y=precision, x=recall)
|
||||
|
||||
return AP, precision, recall, thresholds
|
||||
|
||||
|
||||
# Calculate macro metrics (true positives (TP), false positives (FP))
|
||||
def counts_from_lesion_evaluations(
|
||||
y_list: List[Tuple[int, float, float]],
|
||||
thresholds: "Optional[npt.NDArray[np.float64]]" = None
|
||||
) -> "Tuple[npt.NDArray[np.float32], npt.NDArray[np.float32], npt.NDArray[np.float64], int]":
|
||||
"""
|
||||
Calculate true positives (TP) and false positives (FP) as function of threshold,
|
||||
based on the case evaluations from `evaluate_case`.
|
||||
"""
|
||||
# sort predictions
|
||||
y_list.sort()
|
||||
|
||||
# collect targets and predictions
|
||||
y_true: "npt.NDArray[np.float64]" = np.array([target for target, *_ in y_list])
|
||||
y_pred: "npt.NDArray[np.float64]" = np.array([pred for _, pred, *_ in y_list])
|
||||
|
||||
# calculate number of lesions
|
||||
num_lesions = y_true.sum()
|
||||
|
||||
if thresholds is None:
|
||||
# collect thresholds for FROC analysis
|
||||
thresholds = np.unique(y_pred)
|
||||
thresholds[::-1].sort() # sort thresholds in descending order (inplace)
|
||||
|
||||
# for >10,000 thresholds: resample to 10,000 unique thresholds, while also
|
||||
# keeping all thresholds higher than 0.8 and the first 20 thresholds
|
||||
if len(thresholds) > 10_000:
|
||||
rng = np.arange(1, len(thresholds), len(thresholds)/10_000, dtype=np.int32)
|
||||
st = [thresholds[i] for i in rng]
|
||||
low_thresholds = thresholds[-20:]
|
||||
thresholds = np.array([t for t in thresholds if t > 0.8 or t in st or t in low_thresholds])
|
||||
|
||||
# define placeholders
|
||||
FP: "npt.NDArray[np.float32]" = np.zeros_like(thresholds, dtype=np.float32)
|
||||
TP: "npt.NDArray[np.float32]" = np.zeros_like(thresholds, dtype=np.float32)
|
||||
|
||||
# for each threshold: count FPs and calculate the sensitivity
|
||||
for i, th in enumerate(thresholds):
|
||||
if th > 0:
|
||||
y_pred_thresholded = (y_pred >= th).astype(int)
|
||||
tp = np.sum(y_true*y_pred_thresholded)
|
||||
fp = np.sum(y_pred_thresholded - y_true*y_pred_thresholded)
|
||||
|
||||
# update FROC with new point
|
||||
FP[i] = fp
|
||||
TP[i] = tp
|
||||
else:
|
||||
# extend FROC curve to infinity
|
||||
# TP[i] = TP[-2] #note: aangepast stefan 11-04-2022
|
||||
TP[i] = 1
|
||||
FP[i] = np.inf
|
||||
|
||||
return TP, FP, thresholds, num_lesions
|
||||
|
||||
|
||||
# Compute base prediction metrics TP/FP/FN with associated model confidences
|
||||
def evaluate_case(
|
||||
y_true: np.ndarray,
|
||||
y_pred: np.ndarray,
|
||||
min_overlap: float = 0.10,
|
||||
overlap_func: str = 'DSC',
|
||||
multiple_lesion_candidates_selection_criteria: str = 'overlap',
|
||||
allow_unmatched_candidates_with_minimal_overlap: bool = True
|
||||
) -> Tuple[List[Tuple[int, float, float]], int]:
|
||||
"""
|
||||
Gather the list of lesion candidates, and classify in TP/FP/FN.
|
||||
- multiple_lesion_candidates_selection_criteria: when multiple lesion candidates have overlap with the same
|
||||
ground truth mask, use 'overlap' or 'confidence' to choose
|
||||
which lesion is matched against the ground truth mask.
|
||||
|
||||
Returns:
|
||||
- a list of tuples with:
|
||||
(is_lesion, prediction confidence, Dice similarity coefficient, number of voxels in label)
|
||||
- number of ground truth lesions
|
||||
"""
|
||||
y_list: List[Tuple[int, float, float]] = []
|
||||
|
||||
if overlap_func == 'IoU':
|
||||
overlap_func = calculate_iou
|
||||
elif overlap_func == 'DSC':
|
||||
overlap_func = calculate_dsc
|
||||
else:
|
||||
raise ValueError(f"Overlap function with name {overlap_func} not recognized. Supported are 'IoU' and 'DSC'")
|
||||
|
||||
# convert dtype to float32
|
||||
y_true = y_true.astype('int32')
|
||||
y_pred = y_pred.astype('float32')
|
||||
|
||||
if y_pred.shape[0] < y_true.shape[0]:
|
||||
print("Warning: padding prediction to match label!")
|
||||
y_pred = resize_image_with_crop_or_pad(y_pred, y_true.shape)
|
||||
|
||||
|
||||
confidences, indexed_pred = parse_detection_map(y_pred)
|
||||
|
||||
lesion_candidates_best_overlap: Dict[str, float] = {}
|
||||
|
||||
if y_true.any():
|
||||
# for each malignant scan
|
||||
labeled_gt, num_gt_lesions = ndimage.label(y_true, np.ones((3, 3, 3)))
|
||||
|
||||
for lesiong_id in range(1, num_gt_lesions+1):
|
||||
# for each lesion in ground-truth (GT) label
|
||||
gt_lesion_mask = (labeled_gt == lesiong_id)
|
||||
|
||||
# collect indices of lesion candidates that have any overlap with the current GT lesion
|
||||
overlapping_lesion_candidate_indices = set(np.unique(indexed_pred[gt_lesion_mask]))
|
||||
overlapping_lesion_candidate_indices -= {0} # remove index 0, if present
|
||||
|
||||
# collect lesion candidates for current GT lesion
|
||||
lesion_candidates_for_target_gt: List[Dict[str, Union[int, float]]] = []
|
||||
for lesion_candidate_id, lesion_confidence in confidences:
|
||||
if lesion_candidate_id in overlapping_lesion_candidate_indices:
|
||||
# calculate overlap between lesion candidate and GT mask
|
||||
lesion_pred_mask = (indexed_pred == lesion_candidate_id)
|
||||
overlap_score = overlap_func(lesion_pred_mask, gt_lesion_mask)
|
||||
|
||||
# keep track of the highest overlap a lesion candidate has with any GT lesion
|
||||
lesion_candidates_best_overlap[lesion_candidate_id] = max(
|
||||
overlap_score, lesion_candidates_best_overlap.get(lesion_candidate_id, 0)
|
||||
)
|
||||
|
||||
# store lesion candidate info for current GT mask
|
||||
lesion_candidates_for_target_gt.append({
|
||||
'id': lesion_candidate_id,
|
||||
'confidence': lesion_confidence,
|
||||
'overlap': overlap_score,
|
||||
})
|
||||
print(lesion_candidates_for_target_gt)
|
||||
|
||||
if len(lesion_candidates_for_target_gt) == 0:
|
||||
# no lesion candidate matched with GT mask. Add FN.
|
||||
y_list.append((1, 0., 0.))
|
||||
elif len(lesion_candidates_for_target_gt) == 1:
|
||||
# single lesion candidate overlapped with GT mask. Add TP if overlap is sufficient, or FN otherwise.
|
||||
candidate_info = lesion_candidates_for_target_gt[0]
|
||||
lesion_pred_mask = (indexed_pred == candidate_info['id'])
|
||||
|
||||
if candidate_info['overlap'] > min_overlap:
|
||||
# overlap between lesion candidate and GT mask is sufficient, add TP
|
||||
indexed_pred[lesion_pred_mask] = 0 # remove lesion candidate after assignment
|
||||
y_list.append((1, candidate_info['confidence'], candidate_info['overlap']))
|
||||
else:
|
||||
# overlap between lesion candidate and GT mask is insufficient, add FN
|
||||
y_list.append((1, 0., 0.))
|
||||
else:
|
||||
# multiple predictions for current GT lesion
|
||||
# sort lesion candidates based on overlap or confidence
|
||||
key = multiple_lesion_candidates_selection_criteria
|
||||
lesion_candidates_for_target_gt = sorted(lesion_candidates_for_target_gt, key=lambda x: x[key], reverse=True)
|
||||
|
||||
gt_lesion_matched = False
|
||||
for candidate_info in lesion_candidates_for_target_gt:
|
||||
lesion_pred_mask = (indexed_pred == candidate_info['id'])
|
||||
|
||||
if candidate_info['overlap'] > min_overlap:
|
||||
indexed_pred[lesion_pred_mask] = 0
|
||||
y_list.append((1, candidate_info['confidence'], candidate_info['overlap']))
|
||||
gt_lesion_matched = True
|
||||
break
|
||||
|
||||
if not gt_lesion_matched:
|
||||
# ground truth lesion not matched to a lesion candidate. Add FN.
|
||||
y_list.append((1, 0., 0.))
|
||||
|
||||
# Remaining lesions are FPs
|
||||
remaining_lesions = set(np.unique(indexed_pred))
|
||||
remaining_lesions -= {0} # remove index 0, if present
|
||||
for lesion_candidate_id, lesion_confidence in confidences:
|
||||
if lesion_candidate_id in remaining_lesions:
|
||||
overlap_score = lesion_candidates_best_overlap.get(lesion_candidate_id, 0)
|
||||
if allow_unmatched_candidates_with_minimal_overlap and overlap_score > min_overlap:
|
||||
# The lesion candidate was not matched to a GT lesion, but did have overlap > min_overlap
|
||||
# with a GT lesion. The GT lesion is, however, matched to another lesion candidate.
|
||||
# In this operation mode, this lesion candidate is not considered as a false positive.
|
||||
pass
|
||||
else:
|
||||
y_list.append((0, lesion_confidence, 0.)) # add FP
|
||||
|
||||
else:
|
||||
# for benign case, all predictions are FPs
|
||||
num_gt_lesions = 0
|
||||
if len(confidences) > 0:
|
||||
for _, lesion_confidence in confidences:
|
||||
y_list.append((0, lesion_confidence, 0.))
|
||||
else:
|
||||
y_list.append((0, 0., 0.)) # avoid empty list
|
||||
|
||||
return y_list, num_gt_lesions
|
||||
|
||||
|
||||
# Calculate Intersection over Union (IoU) for N-D Arrays
|
||||
def calculate_iou(predictions: "npt.NDArray[np.float32]", labels: "npt.NDArray[np.int32]") -> float:
|
||||
epsilon = 1e-8
|
||||
iou_num = np.sum(predictions[labels == 1])
|
||||
iou_denom = np.sum(predictions) + np.sum(labels) - iou_num
|
||||
return float((iou_num + epsilon) / (iou_denom + epsilon))
|
||||
|
||||
|
||||
# Calculate Dice Similarity Coefficient (DSC) for N-D Arrays
|
||||
def calculate_dsc(predictions: "npt.NDArray[np.float32]", labels: "npt.NDArray[np.int32]") -> float:
|
||||
epsilon = 1e-8
|
||||
dsc_num = np.sum(predictions[labels == 1]) * 2.0
|
||||
dsc_denom = np.sum(predictions) + np.sum(labels)
|
||||
return float((dsc_num + epsilon) / (dsc_denom + epsilon))
|
||||
|
||||
|
||||
# Resize images (scans/predictions/labels) by cropping and/or padding [Ref: https://github.com/DLTK/DLTK]
|
||||
def resize_image_with_crop_or_pad(image, img_size=(64, 64, 64), **kwargs):
|
||||
assert isinstance(image, np.ndarray)
|
||||
assert (image.ndim - 1 == len(img_size) or image.ndim == len(img_size)), \
|
||||
"Target size doesn't fit image size"
|
||||
|
||||
rank = len(img_size) # image dimensions
|
||||
|
||||
# placeholders for new shape
|
||||
from_indices = [[0, image.shape[dim]] for dim in range(rank)]
|
||||
to_padding = [[0, 0] for _ in range(rank)]
|
||||
slicer = [slice(None)] * rank
|
||||
|
||||
# for each dimension, determine process (cropping or padding)
|
||||
for i in range(rank):
|
||||
if image.shape[i] < img_size[i]:
|
||||
to_padding[i][0] = (img_size[i] - image.shape[i]) // 2
|
||||
to_padding[i][1] = img_size[i] - image.shape[i] - to_padding[i][0]
|
||||
else:
|
||||
from_indices[i][0] = int(np.floor((image.shape[i] - img_size[i]) / 2.))
|
||||
from_indices[i][1] = from_indices[i][0] + img_size[i]
|
||||
|
||||
# create slicer object to crop/leave each dimension
|
||||
slicer[i] = slice(from_indices[i][0], from_indices[i][1])
|
||||
|
||||
# pad cropped image to extend missing dimension
|
||||
return np.pad(image[tuple(slicer)], to_padding, **kwargs)
|
||||
|
||||
|
||||
# Parse Detection Maps to Individual Lesions + Likelihoods
|
||||
def parse_detection_map(detection_map):
|
||||
# Label All Non-Connected Components in Detection Map
|
||||
blobs_index, num_blobs = ndimage.label(detection_map, np.ones((3, 3, 3)))
|
||||
|
||||
confidences = []
|
||||
if num_blobs > 0:
|
||||
# For Each Lesion Detection
|
||||
for tumor_index in range(1, num_blobs+1):
|
||||
|
||||
# Extract Mask of Current Lesion
|
||||
# hard_blob = np.zeros_like(blobs_index)
|
||||
# hard_blob[blobs_index == tumor] = 1
|
||||
# TODO: replace above with the following? Is faster I think.
|
||||
# hard_blob = (blobs_index == tumor).astype(int)
|
||||
|
||||
# Extract Max Predicted Likelihood for Lesion Detection
|
||||
# max_prob = np.max(hard_blob) # <- this is always 1
|
||||
# hard_blob[hard_blob > 0] = max_prob # <- this line does nothing, as hard_blob is not used
|
||||
|
||||
# Store Predicted Likelihood per Lesion Detection
|
||||
max_prob = detection_map[blobs_index == tumor_index].max()
|
||||
confidences.append((tumor_index, max_prob))
|
||||
return confidences, blobs_index
|
||||
|
||||
############################### CONSTANTS ####################################
|
||||
# Quitin code removed
|
||||
############################### CONSTANTS ####################################
|
||||
|
||||
def move_dims(arr):
|
||||
# UMCG numpy dimensions convention: dims = (batch, width, heigth, depth)
|
||||
# Joeran numpy dimensions convention: dims = (batch, depth, heigth, width)
|
||||
arr = np.moveaxis(arr, 3, 1) # Joeran has his numpy arrays ordered differently.
|
||||
arr = np.moveaxis(arr, 3, 2)
|
||||
return arr
|
||||
|
||||
############################### CONSTANTS ####################################
|
||||
|
||||
|
||||
|
||||
|
||||
# # Reconstruction model directory
|
||||
# RECON_DIR = "11_new_recon_multiprocess"
|
||||
# T2_MODEL_PATH = f"models/prelims/{RECON_DIR}/best-direct-fold0.h5"
|
||||
|
||||
# # Path to file with train, validation and test indexes.
|
||||
# IDX_YAML_PATH = r"data/path_lists/pirads_4plus/train_val_test_idxs.yml"
|
||||
|
||||
# # Diagnostic models
|
||||
# diag_models = [r"models/14_long_diag/best-direct-fold0.h5",
|
||||
# r"models/15_long_diag_early_stopping/best-direct-fold0.h5"]
|
||||
|
||||
|
||||
# # x_true_val = np.load("temp/x_true_val.npy")
|
||||
# print("loading numpy arrays")
|
||||
# y_true_val = np.squeeze(np.load("temp/y_true_val_label.npy"))
|
||||
# y_pred_val = np.squeeze(np.load("temp/y_pred_val_detection_map.npy"))
|
||||
# y_true_val = move_dims(y_true_val)
|
||||
# y_pred_val = move_dims(y_pred_val)
|
||||
|
||||
# # Preprocess the blobs individually
|
||||
# for mri_idx in range(y_pred_val.shape[0]):
|
||||
# print(f"preprocessing mri idx {mri_idx}")
|
||||
# y_pred_val[mri_idx] = preprocess_softmax(y_pred_val[mri_idx], threshold="dynamic")[0]
|
||||
|
||||
# print(f"Start FROC evaluation.")
|
||||
# metrics = evaluate(y_true=y_true_val, y_pred=y_pred_val)
|
||||
|
||||
# dump_dict_to_yaml(metrics, 'temp', "froc_metrics", verbose=True)
|
39
code/FROC/data_utils.py
Executable file
39
code/FROC/data_utils.py
Executable file
@@ -0,0 +1,39 @@
|
||||
# Copyright 2022 Diagnostic Image Analysis Group, Radboudumc, Nijmegen, The Netherlands
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import json
|
||||
|
||||
|
||||
def save_metrics(metrics, file_path=None):
|
||||
# convert dtypes to stock Python
|
||||
save_metrics = sterilize(metrics)
|
||||
|
||||
# save metrics using safe file write
|
||||
file_path_tmp = file_path + '.tmp'
|
||||
with open(file_path_tmp, 'w') as fp:
|
||||
json.dump(save_metrics, fp, indent=4)
|
||||
os.rename(file_path_tmp, file_path)
|
||||
|
||||
|
||||
def sterilize(obj):
|
||||
if isinstance(obj, dict):
|
||||
return {k: sterilize(v) for k, v in obj.items()}
|
||||
elif isinstance(obj, (list, tuple, np.ndarray)):
|
||||
return [sterilize(v) for v in obj]
|
||||
elif isinstance(obj, (str, int, bool, float)):
|
||||
return obj
|
||||
else:
|
||||
return obj.__repr__()
|
505
code/FROC/froc.py
Executable file
505
code/FROC/froc.py
Executable file
@@ -0,0 +1,505 @@
|
||||
# Copyright 2022 Diagnostic Image Analysis Group, Radboudumc, Nijmegen, The Netherlands
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
import os
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from scipy import ndimage
|
||||
from sklearn.metrics import roc_curve, auc
|
||||
import concurrent.futures
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from pathlib import Path
|
||||
import itertools
|
||||
|
||||
from typing import List, Tuple, Dict, Any, Union, Optional, Callable, Iterable, Hashable, Sized
|
||||
try:
|
||||
import numpy.typing as npt
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
from image_utils import (
|
||||
resize_image_with_crop_or_pad, read_label, read_prediction
|
||||
)
|
||||
from analysis_utils import (
|
||||
parse_detection_map, calculate_iou, calculate_dsc
|
||||
)
|
||||
|
||||
|
||||
# Compute base prediction metrics TP/FP/FN with associated model confidences
|
||||
def evaluate_case(
|
||||
detection_map: "Union[npt.NDArray[np.float32], str]",
|
||||
label: "Union[npt.NDArray[np.int32], str]",
|
||||
min_overlap: float = 0.10,
|
||||
overlap_func: "Union[str, Callable[[npt.NDArray[np.float32], npt.NDArray[np.int32]], float]]" = 'IoU',
|
||||
multiple_lesion_candidates_selection_criteria: str = 'overlap',
|
||||
allow_unmatched_candidates_with_minimal_overlap: bool = True
|
||||
) -> Tuple[List[Tuple[int, float, float]], int]:
|
||||
"""
|
||||
Gather the list of lesion candidates, and classify in TP/FP/FN.
|
||||
- multiple_lesion_candidates_selection_criteria: when multiple lesion candidates have overlap with the same
|
||||
ground truth mask, use 'overlap' or 'confidence' to choose
|
||||
which lesion is matched against the ground truth mask.
|
||||
|
||||
Returns:
|
||||
- a list of tuples with:
|
||||
(is_lesion, prediction confidence, Dice similarity coefficient, number of voxels in label)
|
||||
- number of ground truth lesions
|
||||
"""
|
||||
y_list: List[Tuple[int, float, float]] = []
|
||||
if isinstance(label, str):
|
||||
label = read_label(label)
|
||||
if isinstance(detection_map, str):
|
||||
detection_map = read_prediction(detection_map)
|
||||
if overlap_func == 'IoU':
|
||||
overlap_func = calculate_iou
|
||||
elif overlap_func == 'DSC':
|
||||
overlap_func = calculate_dsc
|
||||
else:
|
||||
raise ValueError(f"Overlap function with name {overlap_func} not recognized. Supported are 'IoU' and 'DSC'")
|
||||
|
||||
# convert dtype to float32
|
||||
label = label.astype('int32')
|
||||
detection_map = detection_map.astype('float32')
|
||||
|
||||
if detection_map.shape[0] < label.shape[0]:
|
||||
print("Warning: padding prediction to match label!")
|
||||
detection_map = resize_image_with_crop_or_pad(detection_map, label.shape)
|
||||
|
||||
confidences, indexed_pred = parse_detection_map(detection_map)
|
||||
|
||||
lesion_candidates_best_overlap: Dict[str, float] = {}
|
||||
|
||||
# note to stefan: check wether the if statements are correct and that the append goes correct
|
||||
if label.any():
|
||||
# for each malignant scan
|
||||
labeled_gt, num_gt_lesions = ndimage.label(label, np.ones((3, 3, 3)))
|
||||
# print("test3, werkt if label.any", num_gt_lesions) WE
|
||||
for lesiong_id in range(1, num_gt_lesions+1):
|
||||
# for each lesion in ground-truth (GT) label
|
||||
gt_lesion_mask = (labeled_gt == lesiong_id)
|
||||
|
||||
# collect indices of lesion candidates that have any overlap with the current GT lesion
|
||||
overlapping_lesion_candidate_indices = set(np.unique(indexed_pred[gt_lesion_mask]))
|
||||
overlapping_lesion_candidate_indices -= {0} # remove index 0, if present
|
||||
|
||||
# collect lesion candidates for current GT lesion
|
||||
lesion_candidates_for_target_gt: List[Dict[str, Union[int, float]]] = []
|
||||
for lesion_candidate_id, lesion_confidence in confidences:
|
||||
if lesion_candidate_id in overlapping_lesion_candidate_indices:
|
||||
# calculate overlap between lesion candidate and GT mask
|
||||
lesion_pred_mask = (indexed_pred == lesion_candidate_id)
|
||||
overlap_score = overlap_func(lesion_pred_mask, gt_lesion_mask)
|
||||
|
||||
# keep track of the highest overlap a lesion candidate has with any GT lesion
|
||||
lesion_candidates_best_overlap[lesion_candidate_id] = max(
|
||||
overlap_score, lesion_candidates_best_overlap.get(lesion_candidate_id, 0)
|
||||
)
|
||||
|
||||
# store lesion candidate info for current GT mask
|
||||
lesion_candidates_for_target_gt.append({
|
||||
'id': lesion_candidate_id,
|
||||
'confidence': lesion_confidence,
|
||||
'overlap': overlap_score,
|
||||
})
|
||||
print("test 4, lesion_candidates_for_target_gt:",lesion_candidates_for_target_gt)
|
||||
# Min overlap wordt niet behaald: +- 0.001
|
||||
if len(lesion_candidates_for_target_gt) == 0:
|
||||
# no lesion candidate matched with GT mask. Add FN.
|
||||
y_list.append((1, 0., 0.))
|
||||
elif len(lesion_candidates_for_target_gt) == 1:
|
||||
# single lesion candidate overlapped with GT mask. Add TP if overlap is sufficient, or FN otherwise.
|
||||
candidate_info = lesion_candidates_for_target_gt[0]
|
||||
lesion_pred_mask = (indexed_pred == candidate_info['id'])
|
||||
|
||||
if candidate_info['overlap'] > min_overlap:
|
||||
# overlap between lesion candidate and GT mask is sufficient, add TP
|
||||
indexed_pred[lesion_pred_mask] = 0 # remove lesion candidate after assignment
|
||||
y_list.append((1, candidate_info['confidence'], candidate_info['overlap']))
|
||||
else:
|
||||
# overlap between lesion candidate and GT mask is insufficient, add FN
|
||||
y_list.append((1, 0., 0.))
|
||||
else:
|
||||
# multiple predictions for current GT lesion
|
||||
# sort lesion candidates based on overlap or confidence
|
||||
key = multiple_lesion_candidates_selection_criteria
|
||||
lesion_candidates_for_target_gt = sorted(lesion_candidates_for_target_gt, key=lambda x: x[key], reverse=True)
|
||||
|
||||
gt_lesion_matched = False
|
||||
for candidate_info in lesion_candidates_for_target_gt:
|
||||
lesion_pred_mask = (indexed_pred == candidate_info['id'])
|
||||
|
||||
if candidate_info['overlap'] > min_overlap:
|
||||
indexed_pred[lesion_pred_mask] = 0
|
||||
y_list.append((1, candidate_info['confidence'], candidate_info['overlap']))
|
||||
gt_lesion_matched = True
|
||||
break
|
||||
|
||||
if not gt_lesion_matched:
|
||||
# ground truth lesion not matched to a lesion candidate. Add FN.
|
||||
y_list.append((1, 0., 0.))
|
||||
|
||||
# Remaining lesions are FPs
|
||||
remaining_lesions = set(np.unique(indexed_pred))
|
||||
remaining_lesions -= {0} # remove index 0, if present
|
||||
for lesion_candidate_id, lesion_confidence in confidences:
|
||||
if lesion_candidate_id in remaining_lesions:
|
||||
overlap_score = lesion_candidates_best_overlap.get(lesion_candidate_id, 0)
|
||||
if allow_unmatched_candidates_with_minimal_overlap and overlap_score > min_overlap:
|
||||
# The lesion candidate was not matched to a GT lesion, but did have overlap > min_overlap
|
||||
# with a GT lesion. The GT lesion is, however, matched to another lesion candidate.
|
||||
# In this operation mode, this lesion candidate is not considered as a false positive.
|
||||
pass
|
||||
else:
|
||||
y_list.append((0, lesion_confidence, 0.)) # add FP
|
||||
# print("test 4, gaat alles hiernaartoe?") == JA
|
||||
# print("test 3, hoe ziet y_list eruit na labels",y_list)
|
||||
|
||||
else:
|
||||
# for benign case, all predictions are FPs
|
||||
num_gt_lesions = 0
|
||||
if len(confidences) > 0:
|
||||
for _, lesion_confidence in confidences:
|
||||
y_list.append((0, lesion_confidence, 0.))
|
||||
else:
|
||||
y_list.append((0, 0., 0.)) # avoid empty list
|
||||
|
||||
return y_list, num_gt_lesions
|
||||
|
||||
|
||||
# Calculate macro metrics (true positives (TP), false positives (FP))
|
||||
def counts_from_lesion_evaluations(
|
||||
y_list: List[Tuple[int, float, float]],
|
||||
thresholds: "Optional[npt.NDArray[np.float64]]" = None
|
||||
) -> "Tuple[npt.NDArray[np.float32], npt.NDArray[np.float32], npt.NDArray[np.float64], int]":
|
||||
"""
|
||||
Calculate true positives (TP) and false positives (FP) as function of threshold,
|
||||
based on the case evaluations from `evaluate_case`.
|
||||
"""
|
||||
# sort predictions
|
||||
# print("test 4, zitten er predicties bij leasions voor sort?",y_list)
|
||||
y_list.sort()
|
||||
# print("test 4, zitten er predicties bij leasions na sort?",y_list,'len y_lsit:',len(y_list))
|
||||
# collect targets and predictions
|
||||
y_true: "npt.NDArray[np.float64]" = np.array([target for target, *_ in y_list])
|
||||
y_pred: "npt.NDArray[np.float64]" = np.array([pred for _, pred, *_ in y_list])
|
||||
# print("test,zijn de laatste y-pred hoog?", y_pred)
|
||||
# calculate number of lesions
|
||||
num_lesions = y_true.sum()
|
||||
|
||||
if thresholds is None:
|
||||
# collect thresholds for FROC analysis
|
||||
thresholds = np.unique(y_pred)
|
||||
thresholds[::-1].sort() # sort thresholds in descending order (inplace)
|
||||
|
||||
# for >10,000 thresholds: resample to 10,000 unique thresholds, while also
|
||||
# keeping all thresholds higher than 0.8 and the first 20 thresholds
|
||||
if len(thresholds) > 10_000:
|
||||
rng = np.arange(1, len(thresholds), len(thresholds)/10_000, dtype=np.int32)
|
||||
st = [thresholds[i] for i in rng]
|
||||
low_thresholds = thresholds[-20:]
|
||||
thresholds = np.array([t for t in thresholds if t > 0.8 or t in st or t in low_thresholds])
|
||||
|
||||
# define placeholders
|
||||
FP: "npt.NDArray[np.float32]" = np.zeros_like(thresholds, dtype=np.float32)
|
||||
TP: "npt.NDArray[np.float32]" = np.zeros_like(thresholds, dtype=np.float32)
|
||||
|
||||
# for each threshold: count FPs and calculate the sensitivity
|
||||
for i, th in enumerate(thresholds):
|
||||
if th > 0:
|
||||
y_pred_thresholded = (y_pred >= th).astype(int)
|
||||
tp = np.sum(y_true*y_pred_thresholded)
|
||||
fp = np.sum(y_pred_thresholded - y_true*y_pred_thresholded)
|
||||
# print("test, is y_pred_thresholded altijd 0?",y_pred_thresholded)
|
||||
# update FROC with new point
|
||||
FP[i] = fp
|
||||
TP[i] = tp
|
||||
else:
|
||||
# extend FROC curve to infinity
|
||||
TP[i] = TP[-2]
|
||||
FP[i] = np.inf
|
||||
|
||||
|
||||
# print("test if tp werkt",TP)
|
||||
# print("test if fp werkt",FP)
|
||||
return TP, FP, thresholds, num_lesions
|
||||
|
||||
|
||||
# Calculate FROC metrics (FP rate, sensitivity)
|
||||
def froc_from_lesion_evaluations(y_list, num_patients, thresholds=None):
|
||||
# calculate counts
|
||||
TP, FP, thresholds, num_lesions = counts_from_lesion_evaluations(
|
||||
y_list=y_list, thresholds=thresholds
|
||||
)
|
||||
|
||||
# calculate FROC metrics from counts
|
||||
sensitivity = TP / num_lesions if num_lesions > 0 else np.nan
|
||||
# print('test,Hieronder staat de tp waarde:',TP)
|
||||
# print('test,Hieronder staat de num_lesions waarde:',num_lesions)
|
||||
|
||||
FP_per_case = FP / num_patients
|
||||
|
||||
return sensitivity, FP_per_case, thresholds, num_lesions
|
||||
|
||||
|
||||
def ap_from_lesion_evaluations(y_list, thresholds=None):
|
||||
# calculate counts
|
||||
TP, FP, thresholds, num_lesions = counts_from_lesion_evaluations(
|
||||
y_list=y_list, thresholds=thresholds
|
||||
)
|
||||
|
||||
# calculate precision (lesion-level)
|
||||
precision = TP / (TP + FP)
|
||||
precision = np.append(precision, [0])
|
||||
|
||||
# calculate recall (lesion-level)
|
||||
FN = num_lesions - TP
|
||||
recall = TP / (TP + FN)
|
||||
recall = np.append(recall, recall[-1:])
|
||||
|
||||
# calculate average precission (lesion-level)
|
||||
AP = np.trapz(y=precision, x=recall)
|
||||
|
||||
return AP, precision, recall, thresholds
|
||||
|
||||
|
||||
# Compute full FROC
|
||||
def froc(
|
||||
y_det: "Iterable[Union[npt.NDArray[np.float64], str, Path]]",
|
||||
y_true: "Iterable[Union[npt.NDArray[np.float64], str, Path]]",
|
||||
subject_list: Optional[Iterable[Hashable]] = None,
|
||||
min_overlap=0.10,
|
||||
overlap_func: "Union[str, Callable[[npt.NDArray[np.float32], npt.NDArray[np.int32]], float]]" = 'IoU',
|
||||
case_confidence: str = 'max',
|
||||
multiple_lesion_candidates_selection_criteria='overlap',
|
||||
allow_unmatched_candidates_with_minimal_overlap=True,
|
||||
flat: Optional[bool] = None,
|
||||
num_parallel_calls: int = 8,
|
||||
verbose: int = 0,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
FROC evaluation pipeline
|
||||
(written 19 January 2022 by Joeran Bosma)
|
||||
|
||||
Usage:
|
||||
For normal usage of the FROC evaluation pipeline, use the function `froc` with parameters
|
||||
`y_det`, `y_true` and (optional) `subject_list`. Please note that this function is written
|
||||
for binary 3D FROC analysis.
|
||||
|
||||
- `y_det`: iterable of all detection_map volumes to evaluate. Alternatively, y_det may contain
|
||||
filenames ending in .nii.gz/.mha/.mhd/.npy/.npz, which will be loaded on-the-fly.
|
||||
Provide an array of shape `(num_samples, D, H, W)`, where D, H, W are the spatial
|
||||
dimensions (depth, height and width).
|
||||
- `y_true`: iterable of all ground truth labels. Alternatively, y_det may contain filenames
|
||||
ending in .nii.gz/.mha/.mhd/.npy/.npz, which should contain binary labels and
|
||||
will be loaded on-the-fly. Provide an array of the same shape as `y_det`. Use
|
||||
`1` to encode ground truth lesion, and `0` to encode background.
|
||||
|
||||
Additional settings:
|
||||
For more control over the FROC evaluation pipeline, use:
|
||||
- `min_overlap`: defines the minimal required Intersection over Union (IoU) or Dice similarity
|
||||
coefficient (DSC) between a lesion candidate and ground truth lesion, to be
|
||||
counted as a true positive detection.
|
||||
|
||||
"""
|
||||
# Initialize Lists
|
||||
roc_true = {}
|
||||
roc_pred = {}
|
||||
y_list = []
|
||||
num_lesions = 0
|
||||
|
||||
if subject_list is None:
|
||||
# generate indices to keep track of each case during multiprocessing
|
||||
subject_list = itertools.count()
|
||||
if flat is None:
|
||||
flat = True
|
||||
|
||||
with ThreadPoolExecutor(max_workers=num_parallel_calls) as pool:
|
||||
# define the functions that need to be processed: compute_pred_vector, with each individual
|
||||
# detection_map prediction, ground truth label and parameters
|
||||
future_to_args = {
|
||||
pool.submit(evaluate_case, y_pred, y_true, min_overlap=min_overlap, overlap_func=overlap_func,
|
||||
multiple_lesion_candidates_selection_criteria=multiple_lesion_candidates_selection_criteria,
|
||||
allow_unmatched_candidates_with_minimal_overlap=allow_unmatched_candidates_with_minimal_overlap): idx
|
||||
for (y_pred, y_true, idx) in zip(y_det, y_true, subject_list)
|
||||
}
|
||||
|
||||
# process the cases in parallel
|
||||
iterator = concurrent.futures.as_completed(future_to_args)
|
||||
if verbose:
|
||||
total: Optional[int] = None
|
||||
if isinstance(subject_list, Sized):
|
||||
total = len(subject_list)
|
||||
iterator = tqdm(iterator, desc='Computing FROC', total=total)
|
||||
for future in iterator:
|
||||
try:
|
||||
res = future.result()
|
||||
except Exception as e:
|
||||
print(f"Exception: {e}")
|
||||
else:
|
||||
# unpack results
|
||||
y_list_pat, num_lesions_gt = res
|
||||
# note: y_list_pat contains: is_lesion, confidence[, Dice, gt num voxels]
|
||||
# print("test 3,", y_list_pat)
|
||||
# aggregate results
|
||||
idx = future_to_args[future]
|
||||
# print("test2, indx", idx)
|
||||
# test: allemaal ingelezen
|
||||
roc_true[idx] = np.max([a[0] for a in y_list_pat])
|
||||
# print("test2, roc_true",roc_true)
|
||||
if case_confidence == 'max':
|
||||
# take highest lesion confidence as case-level confidence
|
||||
roc_pred[idx] = np.max([a[1] for a in y_list_pat])
|
||||
elif case_confidence == 'bayesian':
|
||||
# if a_i is the probability the i-th lesion is csPCa, then the case-level
|
||||
# probability to have any csPCa lesion is 1 - Π_i{ 1 - a_i}
|
||||
roc_pred[idx] = 1 - np.prod([(1-a[1]) for a in y_list_pat])
|
||||
else:
|
||||
raise ValueError(f"Patient confidence calculation method not recognised. Got: {case_confidence}.")
|
||||
|
||||
# accumulate outputs
|
||||
y_list += y_list_pat
|
||||
num_lesions += num_lesions_gt
|
||||
|
||||
# print("test2,heeft y-list ook leasie pred:",y_list)
|
||||
# calculate statistics
|
||||
num_patients = len(roc_true)
|
||||
|
||||
# get lesion-level results
|
||||
sensitivity, FP_per_case, thresholds, num_lesions = froc_from_lesion_evaluations(
|
||||
y_list=y_list, num_patients=num_patients
|
||||
)
|
||||
|
||||
# calculate recall, precision and average precision
|
||||
AP, precision, recall, _ = ap_from_lesion_evaluations(y_list, thresholds=thresholds)
|
||||
|
||||
# calculate case-level AUROC
|
||||
fpr, tpr, _ = roc_curve(y_true=[roc_true[s] for s in subject_list],
|
||||
y_score=[roc_pred[s] for s in subject_list],
|
||||
pos_label=1)
|
||||
auc_score = auc(fpr, tpr)
|
||||
|
||||
if flat:
|
||||
# flatten roc_true and roc_pred
|
||||
roc_true_flat = [roc_true[s] for s in subject_list]
|
||||
roc_pred_flat = [roc_pred[s] for s in subject_list]
|
||||
|
||||
metrics = {
|
||||
"FP_per_case": FP_per_case,
|
||||
"sensitivity": sensitivity,
|
||||
"thresholds": thresholds,
|
||||
"num_lesions": num_lesions,
|
||||
"num_patients": num_patients,
|
||||
"roc_true": (roc_true_flat if flat else roc_true),
|
||||
"roc_pred": (roc_pred_flat if flat else roc_pred),
|
||||
"AP": AP,
|
||||
"precision": precision,
|
||||
"recall": recall,
|
||||
|
||||
# patient-level predictions
|
||||
'auroc': auc_score,
|
||||
'tpr': tpr,
|
||||
'fpr': fpr,
|
||||
}
|
||||
|
||||
return metrics
|
||||
|
||||
|
||||
def froc_for_folder(
|
||||
y_det_dir: Union[Path, str],
|
||||
y_true_dir: Optional[Union[Path, str]] = None,
|
||||
subject_list: Optional[List[str]] = None,
|
||||
min_overlap: float = 0.10,
|
||||
overlap_func: "Union[str, Callable[[npt.NDArray[np.float32], npt.NDArray[np.int32]], float]]" = 'IoU',
|
||||
case_confidence: str = 'max',
|
||||
flat: Optional[bool] = None,
|
||||
num_parallel_calls: int = 8,
|
||||
verbose: int = 1
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Perform FROC evaluation for all samples found in y_det_dir, or the samples specified in the subject_list
|
||||
|
||||
Input:
|
||||
- y_det_dir: path to folder containing the detection maps
|
||||
- y_true_dir: (optioinal) allow labels to be stored in a different folder
|
||||
- min_overlap: minimum overlap threshold
|
||||
- overlap_func: intersection over union (IoU), Dice similarity coefficient (DSC), or custom function
|
||||
"""
|
||||
if y_true_dir is None:
|
||||
y_true_dir = y_det_dir
|
||||
|
||||
y_det = []
|
||||
y_true = []
|
||||
if subject_list:
|
||||
# collect the detection maps and labels for each case specified in the subject list
|
||||
for subject_id in subject_list:
|
||||
# construct paths to detection maps and labels
|
||||
# print(np.type(subject_id))
|
||||
# print(subject_list)
|
||||
for postfix in [
|
||||
"_detection_map.nii.gz", "_detection_map.npy", "_detection_map.npz",
|
||||
".nii.gz", ".npy", ".npz", "_pred.nii.gz",
|
||||
]:
|
||||
detection_path = os.path.join(y_det_dir, f"{subject_id}{postfix}")
|
||||
if os.path.exists(detection_path):
|
||||
break
|
||||
|
||||
for postfix in [
|
||||
"_label.nii.gz", "label.npy", "label.npz", "_seg.nii.gz",
|
||||
]:
|
||||
label_path = os.path.join(y_true_dir, f"{subject_id}{postfix}")
|
||||
if os.path.exists(label_path):
|
||||
break
|
||||
if not os.path.exists(label_path):
|
||||
assert y_true_dir != y_det_dir, f"Could not find label for {subject_id}!"
|
||||
for postfix in [
|
||||
".nii.gz", ".npy", ".npz",
|
||||
]:
|
||||
label_path = os.path.join(y_true_dir, f"{subject_id}{postfix}")
|
||||
if os.path.exists(label_path):
|
||||
break
|
||||
|
||||
# collect file paths
|
||||
y_det += [detection_path]
|
||||
y_true += [label_path]
|
||||
else:
|
||||
# collect all detection maps found in detection_map_dir
|
||||
file_list = sorted(os.listdir(y_det_dir))
|
||||
subject_list = []
|
||||
if verbose >= 1:
|
||||
print(f"Found {len(file_list)} files in the input directory, collecting detection_mapes with " +
|
||||
"_detection_map.nii.gz and labels with _label.nii.gz..")
|
||||
|
||||
# collect filenames of detection_map predictions and labels
|
||||
for fn in file_list:
|
||||
if '_detection_map' in fn:
|
||||
y_det += [os.path.join(y_det_dir, fn)]
|
||||
y_true += [os.path.join(y_true_dir, fn.replace('_detection_map', '_label'))]
|
||||
subject_list += [fn]
|
||||
|
||||
# ensure files exist
|
||||
for detection_path in y_det:
|
||||
assert os.path.exists(detection_path), f"Could not find detection map for {subject_id} at {detection_path}!"
|
||||
for label_path in y_true:
|
||||
assert os.path.exists(label_path), f"Could not find label for {subject_id} at {label_path}!"
|
||||
|
||||
if verbose >= 1:
|
||||
print(f"Found prediction and label for {len(y_det)} cases. Here are some examples:")
|
||||
print(subject_list[0:5])
|
||||
|
||||
# perform FROC evaluation with compiled file lists
|
||||
return froc(y_det=y_det, y_true=y_true, subject_list=subject_list,
|
||||
min_overlap=min_overlap, overlap_func=overlap_func, case_confidence=case_confidence,
|
||||
flat=flat, num_parallel_calls=num_parallel_calls, verbose=verbose)
|
83
code/FROC/image_utils.py
Executable file
83
code/FROC/image_utils.py
Executable file
@@ -0,0 +1,83 @@
|
||||
# Copyright 2022 Diagnostic Image Analysis Group, Radboudumc, Nijmegen, The Netherlands
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import SimpleITK as sitk
|
||||
from pathlib import Path
|
||||
|
||||
from typing import Union
|
||||
try:
|
||||
import numpy.typing as npt
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
# Resize images (scans/predictions/labels) by cropping and/or padding [Ref: https://github.com/DLTK/DLTK]
|
||||
def resize_image_with_crop_or_pad(image, img_size=(64, 64, 64), **kwargs):
|
||||
assert isinstance(image, np.ndarray)
|
||||
assert (image.ndim - 1 == len(img_size) or image.ndim == len(img_size)), \
|
||||
"Target size doesn't fit image size"
|
||||
|
||||
rank = len(img_size) # image dimensions
|
||||
|
||||
# placeholders for new shape
|
||||
from_indices = [[0, image.shape[dim]] for dim in range(rank)]
|
||||
to_padding = [[0, 0] for _ in range(rank)]
|
||||
slicer = [slice(None)] * rank
|
||||
|
||||
# for each dimension, determine process (cropping or padding)
|
||||
for i in range(rank):
|
||||
if image.shape[i] < img_size[i]:
|
||||
to_padding[i][0] = (img_size[i] - image.shape[i]) // 2
|
||||
to_padding[i][1] = img_size[i] - image.shape[i] - to_padding[i][0]
|
||||
else:
|
||||
from_indices[i][0] = int(np.floor((image.shape[i] - img_size[i]) / 2.))
|
||||
from_indices[i][1] = from_indices[i][0] + img_size[i]
|
||||
|
||||
# create slicer object to crop/leave each dimension
|
||||
slicer[i] = slice(from_indices[i][0], from_indices[i][1])
|
||||
|
||||
# pad cropped image to extend missing dimension
|
||||
return np.pad(image[tuple(slicer)], to_padding, **kwargs)
|
||||
|
||||
|
||||
def read_image(path: Union[Path, str]):
|
||||
"""Read image, given a filepath"""
|
||||
if isinstance(path, Path):
|
||||
path = path.as_posix()
|
||||
else:
|
||||
assert isinstance(path, str), f"Unexpected path type: {type(path)}. Please provide a Path or str."
|
||||
|
||||
if '.npy' in path:
|
||||
return np.load(path)
|
||||
elif '.nii' in path or '.mha' in path or 'mhd' in path:
|
||||
return sitk.GetArrayFromImage(sitk.ReadImage(path))
|
||||
elif '.npz' in path:
|
||||
return np.load(path)['softmax'].astype('float32')[1] # nnUnet format
|
||||
else:
|
||||
raise ValueError(f"Unexpected file path. Supported file formats: .nii(.gz), .mha, .npy and .npz. Got: {path}.")
|
||||
|
||||
|
||||
def read_prediction(path: Union[Path, str]) -> "npt.NDArray[np.float32]":
|
||||
"""Read prediction, given a filepath"""
|
||||
# read prediction and ensure correct dtype
|
||||
pred: "npt.NDArray[np.float32]" = np.array(read_image(path), dtype=np.float32)
|
||||
return pred
|
||||
|
||||
|
||||
def read_label(path: Union[Path, str]) -> "npt.NDArray[np.int32]":
|
||||
"""Read label, given a filepath"""
|
||||
# read label and ensure correct dtype
|
||||
lbl: "npt.NDArray[np.int32]" = np.array(read_image(path), dtype=np.int32)
|
||||
return lbl
|
Reference in New Issue
Block a user