from inspect import _ParameterKind import SimpleITK as sitk import tensorflow as tf from tensorflow.keras.models import load_model from focal_loss import BinaryFocalLoss import numpy as np import multiprocessing from functools import partial import os from os import path from tqdm import tqdm import argparse from sfransen.utils_quintin import * from sfransen.DWI_exp.helpers import * from sfransen.DWI_exp.preprocessing_function import preprocess from sfransen.DWI_exp.callbacks import dice_coef #from sfransen.FROC.blob_preprocess import * from sfransen.FROC.cal_froc_from_np import * from sfransen.load_images import load_images_parrallel from sfransen.DWI_exp.losses import weighted_binary_cross_entropy from umcglib.froc import * from umcglib.binarize import dynamic_threshold def print_p(*args, **kwargs): """ Shorthand for print(..., flush=True) Useful on HPC cluster where output has buffered writes. """ print(*args, **kwargs, flush=True) ######## CUDA ################ os.environ["CUDA_VISIBLE_DEVICES"] = "2" N_CPUS = 12 DATA_DIR = "./../data/Nijmegen paths/" TARGET_SPACING = (0.5, 0.5, 3) INPUT_SHAPE = (192, 192, 24, 3) IMAGE_SHAPE = INPUT_SHAPE[:3] final_table = {} difference = {} for fold in range(5): DATA_SPLIT_INDEX = read_yaml_to_dict(f'./../data/Nijmegen paths/train_val_test_idxs_{fold}.yml') TEST_INDEX = DATA_SPLIT_INDEX['test_set0'] for img_idx in TEST_INDEX: for model in ['b800','b400']: image_paths = {} predictions_added = [] segmentations_added = [] images = [] images_list = [] segmentations = [] if model is 'b800': MODEL_PATH = f'./../train_output/calc_exp_t2_b1400calc2_adccalc2_{fold}/models/calc_exp_t2_b1400calc2_adccalc2_{fold}.h5' # YAML_DIR = f'./../train_output/calc_exp_t2_b1400calc2_adccalc2_{fold}' # IMAGE_DIR = f'./../train_output/calc_exp_t2_b1400calc2_adccalc2_{fold}' SERIES = ['t2','b1400calc2','adccalc2'] if model is 'b400': MODEL_PATH = f'./../train_output/calc_exp_t2_b1400calc3_adccalc3_{fold}/models/calc_exp_t2_b1400calc3_adccalc3_{fold}.h5' SERIES = ['t2','b1400calc3','adccalc3'] for s in SERIES: with open(path.join(DATA_DIR, f"{s}.txt"), 'r') as f: image_paths[s] = [l.strip() for l in f.readlines()] with open(path.join(DATA_DIR, f"seg.txt"), 'r') as f: seg_paths = [l.strip() for l in f.readlines()] num_images = len(seg_paths) pat_id = os.path.basename(os.path.normpath(seg_paths[img_idx]))[:-7] # print_p("pat_idx:",pat_id) # print(image_paths['t2'][]) # input('check?') # Read and preprocess each of the paths for each series, and the segmentations. # print('images number',[TEST_INDEX[img_idx]]) img_s = {f'{s}': sitk.ReadImage(image_paths[s][img_idx], sitk.sitkFloat32) for s in SERIES} seg_s = sitk.ReadImage(seg_paths[img_idx], sitk.sitkFloat32) img_n, seg_n = preprocess(img_s, seg_s, shape=IMAGE_SHAPE, spacing=TARGET_SPACING) for seq in img_n: images.append(img_n[f'{seq}']) images_list.append(images) images = [] segmentations.append(seg_n) images_list = np.transpose(images_list, (0, 2, 3, 4, 1)) ########### load module ################## # print(' >>>>>>> LOAD MODEL <<<<<<<<<') dependencies = { 'dice_coef': dice_coef, 'weighted_cross_entropy_fn':weighted_binary_cross_entropy } reconstructed_model = load_model(MODEL_PATH, custom_objects=dependencies) # reconstructed_model.summary(line_length=120) # make predictions on all TEST_INDEX # print(' >>>>>>> START prediction <<<<<<<<<') predictions_blur = reconstructed_model.predict(images_list, batch_size=1) ############# preprocess ################# # preprocess predictions by removing the blur and making individual blobs # print('>>>>>>>> START preprocess') def move_dims(arr): # UMCG numpy dimensions convention: dims = (batch, width, heigth, depth) # Joeran numpy dimensions convention: dims = (batch, depth, heigth, width) arr = np.moveaxis(arr, 3, 1) arr = np.moveaxis(arr, 3, 2) return arr # Joeran has his numpy arrays ordered differently. predictions_blur = move_dims(np.squeeze(predictions_blur,axis=4)) segmentations = move_dims(segmentations) # predictions = [preprocess_softmax(pred, threshold="dynamic")[0] for pred in predictions_blur] predictions = predictions_blur # print("the size of predictions is:",np.shape(predictions)) # Remove outer edges zeros = np.zeros(np.shape(predictions)) test = predictions[:,2:-2,2:190,2:190] zeros[:,2:-2,2:190,2:190] = test predictions = zeros #make list of worst patient predictions if model is 'b800': final_table[pat_id] = [np.max(predictions)] print_p(f'Max prediction of {pat_id} in b800 is {np.max(predictions)}') if model is 'b400': final_table[pat_id].append(np.max(predictions)) print_p(f'Max prediction of {pat_id} in b400 is {np.max(predictions)}') difference[pat_id] = abs(np.diff(final_table[pat_id])) sorted_difference = {k: v for k, v in sorted(difference.items(), key=lambda item: item[1])} print_p(f'>>{fold}<<',sorted_difference) sorted_differences = {k: v for k, v in sorted(difference.items(), key=lambda item: item[1])} print_p('>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<') print_p(sorted_differences) print_p(sorted_differences[::-1])