fast-mri/src/sfransen/FROC/froc.py

505 lines
22 KiB
Python
Executable File

# Copyright 2022 Diagnostic Image Analysis Group, Radboudumc, Nijmegen, The Netherlands
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from tqdm import tqdm
from scipy import ndimage
from sklearn.metrics import roc_curve, auc
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
import itertools
from typing import List, Tuple, Dict, Any, Union, Optional, Callable, Iterable, Hashable, Sized
try:
import numpy.typing as npt
except ImportError:
pass
from image_utils import (
resize_image_with_crop_or_pad, read_label, read_prediction
)
from analysis_utils import (
parse_detection_map, calculate_iou, calculate_dsc
)
# Compute base prediction metrics TP/FP/FN with associated model confidences
def evaluate_case(
detection_map: "Union[npt.NDArray[np.float32], str]",
label: "Union[npt.NDArray[np.int32], str]",
min_overlap: float = 0.10,
overlap_func: "Union[str, Callable[[npt.NDArray[np.float32], npt.NDArray[np.int32]], float]]" = 'IoU',
multiple_lesion_candidates_selection_criteria: str = 'overlap',
allow_unmatched_candidates_with_minimal_overlap: bool = True
) -> Tuple[List[Tuple[int, float, float]], int]:
"""
Gather the list of lesion candidates, and classify in TP/FP/FN.
- multiple_lesion_candidates_selection_criteria: when multiple lesion candidates have overlap with the same
ground truth mask, use 'overlap' or 'confidence' to choose
which lesion is matched against the ground truth mask.
Returns:
- a list of tuples with:
(is_lesion, prediction confidence, Dice similarity coefficient, number of voxels in label)
- number of ground truth lesions
"""
y_list: List[Tuple[int, float, float]] = []
if isinstance(label, str):
label = read_label(label)
if isinstance(detection_map, str):
detection_map = read_prediction(detection_map)
if overlap_func == 'IoU':
overlap_func = calculate_iou
elif overlap_func == 'DSC':
overlap_func = calculate_dsc
else:
raise ValueError(f"Overlap function with name {overlap_func} not recognized. Supported are 'IoU' and 'DSC'")
# convert dtype to float32
label = label.astype('int32')
detection_map = detection_map.astype('float32')
if detection_map.shape[0] < label.shape[0]:
print("Warning: padding prediction to match label!")
detection_map = resize_image_with_crop_or_pad(detection_map, label.shape)
confidences, indexed_pred = parse_detection_map(detection_map)
lesion_candidates_best_overlap: Dict[str, float] = {}
# note to stefan: check wether the if statements are correct and that the append goes correct
if label.any():
# for each malignant scan
labeled_gt, num_gt_lesions = ndimage.label(label, np.ones((3, 3, 3)))
# print("test3, werkt if label.any", num_gt_lesions) WE
for lesiong_id in range(1, num_gt_lesions+1):
# for each lesion in ground-truth (GT) label
gt_lesion_mask = (labeled_gt == lesiong_id)
# collect indices of lesion candidates that have any overlap with the current GT lesion
overlapping_lesion_candidate_indices = set(np.unique(indexed_pred[gt_lesion_mask]))
overlapping_lesion_candidate_indices -= {0} # remove index 0, if present
# collect lesion candidates for current GT lesion
lesion_candidates_for_target_gt: List[Dict[str, Union[int, float]]] = []
for lesion_candidate_id, lesion_confidence in confidences:
if lesion_candidate_id in overlapping_lesion_candidate_indices:
# calculate overlap between lesion candidate and GT mask
lesion_pred_mask = (indexed_pred == lesion_candidate_id)
overlap_score = overlap_func(lesion_pred_mask, gt_lesion_mask)
# keep track of the highest overlap a lesion candidate has with any GT lesion
lesion_candidates_best_overlap[lesion_candidate_id] = max(
overlap_score, lesion_candidates_best_overlap.get(lesion_candidate_id, 0)
)
# store lesion candidate info for current GT mask
lesion_candidates_for_target_gt.append({
'id': lesion_candidate_id,
'confidence': lesion_confidence,
'overlap': overlap_score,
})
print("test 4, lesion_candidates_for_target_gt:",lesion_candidates_for_target_gt)
# Min overlap wordt niet behaald: +- 0.001
if len(lesion_candidates_for_target_gt) == 0:
# no lesion candidate matched with GT mask. Add FN.
y_list.append((1, 0., 0.))
elif len(lesion_candidates_for_target_gt) == 1:
# single lesion candidate overlapped with GT mask. Add TP if overlap is sufficient, or FN otherwise.
candidate_info = lesion_candidates_for_target_gt[0]
lesion_pred_mask = (indexed_pred == candidate_info['id'])
if candidate_info['overlap'] > min_overlap:
# overlap between lesion candidate and GT mask is sufficient, add TP
indexed_pred[lesion_pred_mask] = 0 # remove lesion candidate after assignment
y_list.append((1, candidate_info['confidence'], candidate_info['overlap']))
else:
# overlap between lesion candidate and GT mask is insufficient, add FN
y_list.append((1, 0., 0.))
else:
# multiple predictions for current GT lesion
# sort lesion candidates based on overlap or confidence
key = multiple_lesion_candidates_selection_criteria
lesion_candidates_for_target_gt = sorted(lesion_candidates_for_target_gt, key=lambda x: x[key], reverse=True)
gt_lesion_matched = False
for candidate_info in lesion_candidates_for_target_gt:
lesion_pred_mask = (indexed_pred == candidate_info['id'])
if candidate_info['overlap'] > min_overlap:
indexed_pred[lesion_pred_mask] = 0
y_list.append((1, candidate_info['confidence'], candidate_info['overlap']))
gt_lesion_matched = True
break
if not gt_lesion_matched:
# ground truth lesion not matched to a lesion candidate. Add FN.
y_list.append((1, 0., 0.))
# Remaining lesions are FPs
remaining_lesions = set(np.unique(indexed_pred))
remaining_lesions -= {0} # remove index 0, if present
for lesion_candidate_id, lesion_confidence in confidences:
if lesion_candidate_id in remaining_lesions:
overlap_score = lesion_candidates_best_overlap.get(lesion_candidate_id, 0)
if allow_unmatched_candidates_with_minimal_overlap and overlap_score > min_overlap:
# The lesion candidate was not matched to a GT lesion, but did have overlap > min_overlap
# with a GT lesion. The GT lesion is, however, matched to another lesion candidate.
# In this operation mode, this lesion candidate is not considered as a false positive.
pass
else:
y_list.append((0, lesion_confidence, 0.)) # add FP
# print("test 4, gaat alles hiernaartoe?") == JA
# print("test 3, hoe ziet y_list eruit na labels",y_list)
else:
# for benign case, all predictions are FPs
num_gt_lesions = 0
if len(confidences) > 0:
for _, lesion_confidence in confidences:
y_list.append((0, lesion_confidence, 0.))
else:
y_list.append((0, 0., 0.)) # avoid empty list
return y_list, num_gt_lesions
# Calculate macro metrics (true positives (TP), false positives (FP))
def counts_from_lesion_evaluations(
y_list: List[Tuple[int, float, float]],
thresholds: "Optional[npt.NDArray[np.float64]]" = None
) -> "Tuple[npt.NDArray[np.float32], npt.NDArray[np.float32], npt.NDArray[np.float64], int]":
"""
Calculate true positives (TP) and false positives (FP) as function of threshold,
based on the case evaluations from `evaluate_case`.
"""
# sort predictions
# print("test 4, zitten er predicties bij leasions voor sort?",y_list)
y_list.sort()
# print("test 4, zitten er predicties bij leasions na sort?",y_list,'len y_lsit:',len(y_list))
# collect targets and predictions
y_true: "npt.NDArray[np.float64]" = np.array([target for target, *_ in y_list])
y_pred: "npt.NDArray[np.float64]" = np.array([pred for _, pred, *_ in y_list])
# print("test,zijn de laatste y-pred hoog?", y_pred)
# calculate number of lesions
num_lesions = y_true.sum()
if thresholds is None:
# collect thresholds for FROC analysis
thresholds = np.unique(y_pred)
thresholds[::-1].sort() # sort thresholds in descending order (inplace)
# for >10,000 thresholds: resample to 10,000 unique thresholds, while also
# keeping all thresholds higher than 0.8 and the first 20 thresholds
if len(thresholds) > 10_000:
rng = np.arange(1, len(thresholds), len(thresholds)/10_000, dtype=np.int32)
st = [thresholds[i] for i in rng]
low_thresholds = thresholds[-20:]
thresholds = np.array([t for t in thresholds if t > 0.8 or t in st or t in low_thresholds])
# define placeholders
FP: "npt.NDArray[np.float32]" = np.zeros_like(thresholds, dtype=np.float32)
TP: "npt.NDArray[np.float32]" = np.zeros_like(thresholds, dtype=np.float32)
# for each threshold: count FPs and calculate the sensitivity
for i, th in enumerate(thresholds):
if th > 0:
y_pred_thresholded = (y_pred >= th).astype(int)
tp = np.sum(y_true*y_pred_thresholded)
fp = np.sum(y_pred_thresholded - y_true*y_pred_thresholded)
# print("test, is y_pred_thresholded altijd 0?",y_pred_thresholded)
# update FROC with new point
FP[i] = fp
TP[i] = tp
else:
# extend FROC curve to infinity
TP[i] = TP[-2]
FP[i] = np.inf
# print("test if tp werkt",TP)
# print("test if fp werkt",FP)
return TP, FP, thresholds, num_lesions
# Calculate FROC metrics (FP rate, sensitivity)
def froc_from_lesion_evaluations(y_list, num_patients, thresholds=None):
# calculate counts
TP, FP, thresholds, num_lesions = counts_from_lesion_evaluations(
y_list=y_list, thresholds=thresholds
)
# calculate FROC metrics from counts
sensitivity = TP / num_lesions if num_lesions > 0 else np.nan
# print('test,Hieronder staat de tp waarde:',TP)
# print('test,Hieronder staat de num_lesions waarde:',num_lesions)
FP_per_case = FP / num_patients
return sensitivity, FP_per_case, thresholds, num_lesions
def ap_from_lesion_evaluations(y_list, thresholds=None):
# calculate counts
TP, FP, thresholds, num_lesions = counts_from_lesion_evaluations(
y_list=y_list, thresholds=thresholds
)
# calculate precision (lesion-level)
precision = TP / (TP + FP)
precision = np.append(precision, [0])
# calculate recall (lesion-level)
FN = num_lesions - TP
recall = TP / (TP + FN)
recall = np.append(recall, recall[-1:])
# calculate average precission (lesion-level)
AP = np.trapz(y=precision, x=recall)
return AP, precision, recall, thresholds
# Compute full FROC
def froc(
y_det: "Iterable[Union[npt.NDArray[np.float64], str, Path]]",
y_true: "Iterable[Union[npt.NDArray[np.float64], str, Path]]",
subject_list: Optional[Iterable[Hashable]] = None,
min_overlap=0.10,
overlap_func: "Union[str, Callable[[npt.NDArray[np.float32], npt.NDArray[np.int32]], float]]" = 'IoU',
case_confidence: str = 'max',
multiple_lesion_candidates_selection_criteria='overlap',
allow_unmatched_candidates_with_minimal_overlap=True,
flat: Optional[bool] = None,
num_parallel_calls: int = 8,
verbose: int = 0,
) -> Dict[str, Any]:
"""
FROC evaluation pipeline
(written 19 January 2022 by Joeran Bosma)
Usage:
For normal usage of the FROC evaluation pipeline, use the function `froc` with parameters
`y_det`, `y_true` and (optional) `subject_list`. Please note that this function is written
for binary 3D FROC analysis.
- `y_det`: iterable of all detection_map volumes to evaluate. Alternatively, y_det may contain
filenames ending in .nii.gz/.mha/.mhd/.npy/.npz, which will be loaded on-the-fly.
Provide an array of shape `(num_samples, D, H, W)`, where D, H, W are the spatial
dimensions (depth, height and width).
- `y_true`: iterable of all ground truth labels. Alternatively, y_det may contain filenames
ending in .nii.gz/.mha/.mhd/.npy/.npz, which should contain binary labels and
will be loaded on-the-fly. Provide an array of the same shape as `y_det`. Use
`1` to encode ground truth lesion, and `0` to encode background.
Additional settings:
For more control over the FROC evaluation pipeline, use:
- `min_overlap`: defines the minimal required Intersection over Union (IoU) or Dice similarity
coefficient (DSC) between a lesion candidate and ground truth lesion, to be
counted as a true positive detection.
"""
# Initialize Lists
roc_true = {}
roc_pred = {}
y_list = []
num_lesions = 0
if subject_list is None:
# generate indices to keep track of each case during multiprocessing
subject_list = itertools.count()
if flat is None:
flat = True
with ThreadPoolExecutor(max_workers=num_parallel_calls) as pool:
# define the functions that need to be processed: compute_pred_vector, with each individual
# detection_map prediction, ground truth label and parameters
future_to_args = {
pool.submit(evaluate_case, y_pred, y_true, min_overlap=min_overlap, overlap_func=overlap_func,
multiple_lesion_candidates_selection_criteria=multiple_lesion_candidates_selection_criteria,
allow_unmatched_candidates_with_minimal_overlap=allow_unmatched_candidates_with_minimal_overlap): idx
for (y_pred, y_true, idx) in zip(y_det, y_true, subject_list)
}
# process the cases in parallel
iterator = concurrent.futures.as_completed(future_to_args)
if verbose:
total: Optional[int] = None
if isinstance(subject_list, Sized):
total = len(subject_list)
iterator = tqdm(iterator, desc='Computing FROC', total=total)
for future in iterator:
try:
res = future.result()
except Exception as e:
print(f"Exception: {e}")
else:
# unpack results
y_list_pat, num_lesions_gt = res
# note: y_list_pat contains: is_lesion, confidence[, Dice, gt num voxels]
# print("test 3,", y_list_pat)
# aggregate results
idx = future_to_args[future]
# print("test2, indx", idx)
# test: allemaal ingelezen
roc_true[idx] = np.max([a[0] for a in y_list_pat])
# print("test2, roc_true",roc_true)
if case_confidence == 'max':
# take highest lesion confidence as case-level confidence
roc_pred[idx] = np.max([a[1] for a in y_list_pat])
elif case_confidence == 'bayesian':
# if a_i is the probability the i-th lesion is csPCa, then the case-level
# probability to have any csPCa lesion is 1 - Π_i{ 1 - a_i}
roc_pred[idx] = 1 - np.prod([(1-a[1]) for a in y_list_pat])
else:
raise ValueError(f"Patient confidence calculation method not recognised. Got: {case_confidence}.")
# accumulate outputs
y_list += y_list_pat
num_lesions += num_lesions_gt
# print("test2,heeft y-list ook leasie pred:",y_list)
# calculate statistics
num_patients = len(roc_true)
# get lesion-level results
sensitivity, FP_per_case, thresholds, num_lesions = froc_from_lesion_evaluations(
y_list=y_list, num_patients=num_patients
)
# calculate recall, precision and average precision
AP, precision, recall, _ = ap_from_lesion_evaluations(y_list, thresholds=thresholds)
# calculate case-level AUROC
fpr, tpr, _ = roc_curve(y_true=[roc_true[s] for s in subject_list],
y_score=[roc_pred[s] for s in subject_list],
pos_label=1)
auc_score = auc(fpr, tpr)
if flat:
# flatten roc_true and roc_pred
roc_true_flat = [roc_true[s] for s in subject_list]
roc_pred_flat = [roc_pred[s] for s in subject_list]
metrics = {
"FP_per_case": FP_per_case,
"sensitivity": sensitivity,
"thresholds": thresholds,
"num_lesions": num_lesions,
"num_patients": num_patients,
"roc_true": (roc_true_flat if flat else roc_true),
"roc_pred": (roc_pred_flat if flat else roc_pred),
"AP": AP,
"precision": precision,
"recall": recall,
# patient-level predictions
'auroc': auc_score,
'tpr': tpr,
'fpr': fpr,
}
return metrics
def froc_for_folder(
y_det_dir: Union[Path, str],
y_true_dir: Optional[Union[Path, str]] = None,
subject_list: Optional[List[str]] = None,
min_overlap: float = 0.10,
overlap_func: "Union[str, Callable[[npt.NDArray[np.float32], npt.NDArray[np.int32]], float]]" = 'IoU',
case_confidence: str = 'max',
flat: Optional[bool] = None,
num_parallel_calls: int = 8,
verbose: int = 1
) -> Dict[str, Any]:
"""
Perform FROC evaluation for all samples found in y_det_dir, or the samples specified in the subject_list
Input:
- y_det_dir: path to folder containing the detection maps
- y_true_dir: (optioinal) allow labels to be stored in a different folder
- min_overlap: minimum overlap threshold
- overlap_func: intersection over union (IoU), Dice similarity coefficient (DSC), or custom function
"""
if y_true_dir is None:
y_true_dir = y_det_dir
y_det = []
y_true = []
if subject_list:
# collect the detection maps and labels for each case specified in the subject list
for subject_id in subject_list:
# construct paths to detection maps and labels
# print(np.type(subject_id))
# print(subject_list)
for postfix in [
"_detection_map.nii.gz", "_detection_map.npy", "_detection_map.npz",
".nii.gz", ".npy", ".npz", "_pred.nii.gz",
]:
detection_path = os.path.join(y_det_dir, f"{subject_id}{postfix}")
if os.path.exists(detection_path):
break
for postfix in [
"_label.nii.gz", "label.npy", "label.npz", "_seg.nii.gz",
]:
label_path = os.path.join(y_true_dir, f"{subject_id}{postfix}")
if os.path.exists(label_path):
break
if not os.path.exists(label_path):
assert y_true_dir != y_det_dir, f"Could not find label for {subject_id}!"
for postfix in [
".nii.gz", ".npy", ".npz",
]:
label_path = os.path.join(y_true_dir, f"{subject_id}{postfix}")
if os.path.exists(label_path):
break
# collect file paths
y_det += [detection_path]
y_true += [label_path]
else:
# collect all detection maps found in detection_map_dir
file_list = sorted(os.listdir(y_det_dir))
subject_list = []
if verbose >= 1:
print(f"Found {len(file_list)} files in the input directory, collecting detection_mapes with " +
"_detection_map.nii.gz and labels with _label.nii.gz..")
# collect filenames of detection_map predictions and labels
for fn in file_list:
if '_detection_map' in fn:
y_det += [os.path.join(y_det_dir, fn)]
y_true += [os.path.join(y_true_dir, fn.replace('_detection_map', '_label'))]
subject_list += [fn]
# ensure files exist
for detection_path in y_det:
assert os.path.exists(detection_path), f"Could not find detection map for {subject_id} at {detection_path}!"
for label_path in y_true:
assert os.path.exists(label_path), f"Could not find label for {subject_id} at {label_path}!"
if verbose >= 1:
print(f"Found prediction and label for {len(y_det)} cases. Here are some examples:")
print(subject_list[0:5])
# perform FROC evaluation with compiled file lists
return froc(y_det=y_det, y_true=y_true, subject_list=subject_list,
min_overlap=min_overlap, overlap_func=overlap_func, case_confidence=case_confidence,
flat=flat, num_parallel_calls=num_parallel_calls, verbose=verbose)