fast-mri/scripts/4.frocs.py

218 lines
7.1 KiB
Python
Executable File

import sys
from os import path
import SimpleITK as sitk
import tensorflow as tf
from tensorflow.keras.models import load_model
from focal_loss import BinaryFocalLoss
import json
import matplotlib.pyplot as plt
import numpy as np
import multiprocessing
from functools import partial
sys.path.append('./../code')
from utils_quintin import *
sys.path.append('./../code/DWI_exp')
from helpers import *
from preprocessing_function import preprocess
from callbacks import dice_coef
sys.path.append('./../code/FROC')
from blob_preprocess import *
from cal_froc_from_np import *
parser = argparse.ArgumentParser(
description='Train a U-Net model for segmentation/detection tasks.' +
'using cross-validation.')
parser.add_argument('--series', '-s',
metavar='[series_name]', required=True, nargs='+',
help='List of series to include, must correspond with' +
"path files in ./data/")
args = parser.parse_args()
######## parsed inputs #############
# SERIES = ['b50', 'b400', 'b800'] #can be parsed
SERIES = args.series
series_ = '_'.join(args.series)
# Import model
# MODEL_PATH = f'./../train_output/train_10h_{series_}/models/train_10h_{series_}.h5'
# YAML_DIR = f'./../train_output/train_10h_{series_}'
MODEL_PATH = f'./../train_output/train_n0.001_{series_}/models/train_n0.001_{series_}.h5'
print(MODEL_PATH)
YAML_DIR = f'./../train_output/train_n0.001_{series_}'
################ constants ############
DATA_DIR = "./../data/Nijmegen paths/"
TARGET_SPACING = (0.5, 0.5, 3)
INPUT_SHAPE = (192, 192, 24, len(SERIES))
IMAGE_SHAPE = INPUT_SHAPE[:3]
# import val_indx
DATA_SPLIT_INDEX = read_yaml_to_dict('./../data/Nijmegen paths/train_val_test_idxs.yml')
TEST_INDEX = DATA_SPLIT_INDEX['val_set0']
########## load images ##############
images, image_paths = {s: [] for s in SERIES}, {}
segmentations = []
print_(f"> Loading images into RAM...")
for s in SERIES:
with open(path.join(DATA_DIR, f"{s}.txt"), 'r') as f:
image_paths[s] = [l.strip() for l in f.readlines()]
with open(path.join(DATA_DIR, f"seg.txt"), 'r') as f:
seg_paths = [l.strip() for l in f.readlines()]
num_images = len(seg_paths)
# Read and preprocess each of the paths for each SERIES, and the segmentations.
from typing import List
def load_images(
image_paths: str,
seq: str,
target_shape: List[int],
target_space = List[float]):
img_s = sitk.ReadImage(image_paths, sitk.sitkFloat32)
#resample
mri_tra_s = resample(img_s,
min_shape=target_shape,
method=sitk.sitkNearestNeighbor,
new_spacing=target_space)
#center crop
mri_tra_s = center_crop(mri_tra_s, shape=target_shape)
#normalize
if seq != 'seg':
filter = sitk.NormalizeImageFilter()
mri_tra_s = filter.Execute(mri_tra_s)
else:
filter = sitk.BinaryThresholdImageFilter()
filter.SetLowerThreshold(1.0)
mri_tra_s = filter.Execute(mri_tra_s)
return sitk.GetArrayFromImage(mri_tra_s).T
N_CPUS = 12
pool = multiprocessing.Pool(processes=N_CPUS)
partial_f = partial(load_images,
seq = 'images',
target_shape=IMAGE_SHAPE,
target_space = TARGET_SPACING)
images_2 = []
for s in SERIES:
image_paths_seq = image_paths[s]
image_paths_index = np.asarray(image_paths_seq)[TEST_INDEX]
data_list = pool.map(partial_f,image_paths_index)
data = np.stack(data_list, axis=0)
images_2.append(data)
# print(s)
# print(np.shape(data))
print(np.shape(images_2))
partial_f = partial(load_images,
seq = 'seg',
target_shape=IMAGE_SHAPE,
target_space = TARGET_SPACING)
seg_paths_index = np.asarray(seg_paths)[TEST_INDEX]
data_list = pool.map(partial_f,seg_paths_index)
segmentations = np.stack(data_list, axis=0)
# print("segmentations pool",np.shape(segmentations_2))
# for img_idx in TEST_INDEX: #for less images
# img_s = {s: sitk.ReadImage(image_paths[s][img_idx], sitk.sitkFloat32)
# for s in SERIES}
# seg_s = sitk.ReadImage(seg_paths[img_idx], sitk.sitkFloat32)
# img_n, seg_n = preprocess(img_s, seg_s,
# shape=IMAGE_SHAPE, spacing=TARGET_SPACING)
# for seq in img_n:
# images[seq].append(img_n[seq])
# segmentations.append(seg_n)
# print("segmentations old",np.shape(segmentations))
# # from dict to list
# # images_list = [img nmbr, [INPUT_SHAPE]]
# images_list = [images[s] for s in images.keys()]
# images_list = np.transpose(images_list, (1, 2, 3, 4, 0))
images_list = np.transpose(images_2, (1, 2, 3, 4, 0))
print("images size ",np.shape(images_list))
print("size segmentation",np.shape(segmentations))
# print("images size pool",np.shape(images_list_2))
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
########### load module ##################
print(' >>>>>>> LOAD MODEL <<<<<<<<<')
dependencies = {
'dice_coef': dice_coef
}
reconstructed_model = load_model(MODEL_PATH, custom_objects=dependencies)
# reconstructed_model.summary(line_length=120)
# make predictions on all val_indx
print(' >>>>>>> START prediction <<<<<<<<<')
predictions_blur = reconstructed_model.predict(images_list, batch_size=1)
# print("The shape of the predictions list is: ",np.shape(predictions_blur))
# print(type(predictions))
# np.save('predictions',predictions)
# preprocess predictions by removing the blur and making individual blobs
print('>>>>>>>> START preprocess')
def move_dims(arr):
# UMCG numpy dimensions convention: dims = (batch, width, heigth, depth)
# Joeran numpy dimensions convention: dims = (batch, depth, heigth, width)
arr = np.moveaxis(arr, 3, 1) # Joeran has his numpy arrays ordered differently.
arr = np.moveaxis(arr, 3, 2)
return arr
# Joeran has his numpy arrays ordered differently.
predictions_blur = move_dims(np.squeeze(predictions_blur))
segmentations = move_dims(np.squeeze(segmentations))
predictions = [preprocess_softmax(pred, threshold="dynamic")[0] for pred in predictions_blur]
# Remove outer edges
zeros = np.zeros(np.shape(predictions))
test = np.squeeze(predictions)[:,:,2:190,2:190]
zeros[:,:,2:190,2:190] = test
predictions = zeros
# perform Froc
metrics = evaluate(y_true=segmentations, y_pred=predictions)
dump_dict_to_yaml(metrics, YAML_DIR, "froc_metrics", verbose=True)
# save one image
IMAGE_DIR = f'./../train_output/train_10h_{series_}'
img_s = sitk.GetImageFromArray(predictions_blur[3].squeeze())
sitk.WriteImage(img_s, f"{IMAGE_DIR}/predictions_blur_001.nii.gz")
img_s = sitk.GetImageFromArray(predictions[3].squeeze())
sitk.WriteImage(img_s, f"{IMAGE_DIR}/predictions_001.nii.gz")
img_s = sitk.GetImageFromArray(segmentations[3].squeeze())
sitk.WriteImage(img_s, f"{IMAGE_DIR}/segmentations_001.nii.gz")
# create plot
# json_path = './../scripts/metrics.json'
# f = open(json_path)
# data = json.load(f)
# x = data['fpr']
# y = data['tpr']
# auroc = data['auroc']
# plt.plot(x,y)