213 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
import SimpleITK as sitk
 | 
						|
import tensorflow as tf
 | 
						|
from tensorflow.keras.models import load_model
 | 
						|
from focal_loss import BinaryFocalLoss
 | 
						|
import numpy as np
 | 
						|
import multiprocessing
 | 
						|
from functools import partial
 | 
						|
import os 
 | 
						|
from os import path
 | 
						|
 | 
						|
 | 
						|
from sfransen.utils_quintin import * 
 | 
						|
from sfransen.DWI_exp.helpers import *
 | 
						|
from sfransen.DWI_exp.preprocessing_function import preprocess  
 | 
						|
from sfransen.DWI_exp.callbacks import dice_coef
 | 
						|
#from sfransen.FROC.blob_preprocess import *
 | 
						|
from sfransen.FROC.cal_froc_from_np import *
 | 
						|
from sfransen.load_images import load_images_parrallel
 | 
						|
from sfransen.DWI_exp.losses import weighted_binary_cross_entropy
 | 
						|
 | 
						|
 | 
						|
parser = argparse.ArgumentParser(
 | 
						|
    description='Calculate the froc metrics and store in froc_metrics.yml')
 | 
						|
parser.add_argument('-experiment',
 | 
						|
    help='Title of experiment')                
 | 
						|
parser.add_argument('--series', '-s', 
 | 
						|
    metavar='[series_name]', required=True, nargs='+',
 | 
						|
    help='List of series to include')
 | 
						|
args = parser.parse_args()
 | 
						|
 | 
						|
# if __name__ = '__main__':
 | 
						|
# bovenstaande nodig om fork probleem op te lossen (windows cs linux)
 | 
						|
 | 
						|
######## CUDA ################
 | 
						|
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
 | 
						|
 | 
						|
######## constants #############
 | 
						|
SERIES = args.series
 | 
						|
series_ = '_'.join(args.series)
 | 
						|
EXPERIMENT = args.experiment
 | 
						|
 | 
						|
MODEL_PATH = f'./../train_output/{EXPERIMENT}_{series_}/models/{EXPERIMENT}_{series_}.h5'
 | 
						|
YAML_DIR = f'./../train_output/{EXPERIMENT}_{series_}'
 | 
						|
IMAGE_DIR = f'./../train_output/{EXPERIMENT}_{series_}'
 | 
						|
 | 
						|
DATA_DIR = "./../data/Nijmegen paths/"
 | 
						|
TARGET_SPACING = (0.5, 0.5, 3) 
 | 
						|
INPUT_SHAPE = (192, 192, 24, len(SERIES))
 | 
						|
IMAGE_SHAPE = INPUT_SHAPE[:3]
 | 
						|
 | 
						|
DATA_SPLIT_INDEX = read_yaml_to_dict('./../data/Nijmegen paths/train_val_test_idxs.yml')
 | 
						|
TEST_INDEX = DATA_SPLIT_INDEX['val_set0']
 | 
						|
 | 
						|
N_CPUS = 12
 | 
						|
 | 
						|
 | 
						|
########## load images in parrallel ##############
 | 
						|
print_(f"> Loading images into RAM...")
 | 
						|
 | 
						|
# # read paths from txt
 | 
						|
# image_paths = {}
 | 
						|
# for s in SERIES:
 | 
						|
#     with open(path.join(DATA_DIR, f"{s}.txt"), 'r') as f:
 | 
						|
#         image_paths[s] = [l.strip() for l in f.readlines()]
 | 
						|
# with open(path.join(DATA_DIR, f"seg.txt"), 'r') as f:
 | 
						|
#     seg_paths = [l.strip() for l in f.readlines()]
 | 
						|
# num_images = len(seg_paths)
 | 
						|
 | 
						|
# # create pool of workers
 | 
						|
# pool = multiprocessing.Pool(processes=N_CPUS)
 | 
						|
# partial_images = partial(load_images_parrallel,
 | 
						|
#                     seq = 'images',
 | 
						|
#                     target_shape=IMAGE_SHAPE,
 | 
						|
#                     target_space = TARGET_SPACING)
 | 
						|
# partial_seg = partial(load_images_parrallel,
 | 
						|
#                     seq = 'seg',
 | 
						|
#                     target_shape=IMAGE_SHAPE,
 | 
						|
#                     target_space = TARGET_SPACING)
 | 
						|
 | 
						|
# #load images
 | 
						|
# images = []
 | 
						|
# for s in SERIES:
 | 
						|
#     image_paths_seq = image_paths[s]
 | 
						|
#     image_paths_index = np.asarray(image_paths_seq)[TEST_INDEX][:5]
 | 
						|
#     data_list = pool.map(partial_images,image_paths_index)
 | 
						|
#     data = np.stack(data_list, axis=0)
 | 
						|
#     images.append(data)
 | 
						|
 | 
						|
# images_list = np.transpose(images, (1, 2, 3, 4, 0))
 | 
						|
# print('>>>>> size image_list nmr 1:', np.shape(images_list))
 | 
						|
 | 
						|
# #load segmentations
 | 
						|
# seg_paths_index = np.asarray(seg_paths)[TEST_INDEX][:5]
 | 
						|
# data_list = pool.map(partial_seg,seg_paths_index)
 | 
						|
# segmentations = np.stack(data_list, axis=0)
 | 
						|
 | 
						|
########## test with old method #############
 | 
						|
image_paths = {}
 | 
						|
 | 
						|
for s in SERIES:
 | 
						|
    with open(path.join(DATA_DIR, f"{s}.txt"), 'r') as f:
 | 
						|
        image_paths[s] = [l.strip() for l in f.readlines()]
 | 
						|
with open(path.join(DATA_DIR, f"seg.txt"), 'r') as f:
 | 
						|
    seg_paths = [l.strip() for l in f.readlines()]
 | 
						|
num_images = len(seg_paths)
 | 
						|
 | 
						|
images = []
 | 
						|
images_list = []
 | 
						|
segmentations = []
 | 
						|
 | 
						|
# Read and preprocess each of the paths for each series, and the segmentations.
 | 
						|
for img_idx in tqdm(range(len(TEST_INDEX))): #[:40]): #for less images
 | 
						|
    # print('images number',[TEST_INDEX[img_idx]])
 | 
						|
    img_s = {f'{s}': sitk.ReadImage(image_paths[s][TEST_INDEX[img_idx]], sitk.sitkFloat32) for s in SERIES}
 | 
						|
    seg_s = sitk.ReadImage(seg_paths[TEST_INDEX[img_idx]], sitk.sitkFloat32)
 | 
						|
    img_n, seg_n = preprocess(img_s, seg_s, 
 | 
						|
        shape=IMAGE_SHAPE, spacing=TARGET_SPACING)
 | 
						|
    for seq in img_n:
 | 
						|
        images.append(img_n[f'{seq}'])
 | 
						|
    images_list.append(images)
 | 
						|
    images = []
 | 
						|
    segmentations.append(seg_n)
 | 
						|
 | 
						|
images_list = np.transpose(images_list, (0, 2, 3, 4, 1))
 | 
						|
 | 
						|
print('>>>>> size image_list nmr 2:', np.shape(images_list), '. equal to: (5, 192, 192, 24, 3)?')
 | 
						|
 | 
						|
########### load module ##################
 | 
						|
print(' >>>>>>> LOAD MODEL <<<<<<<<<')
 | 
						|
 | 
						|
dependencies = {
 | 
						|
    'dice_coef': dice_coef,
 | 
						|
    'weighted_cross_entropy_fn':weighted_binary_cross_entropy
 | 
						|
}
 | 
						|
reconstructed_model = load_model(MODEL_PATH, custom_objects=dependencies)
 | 
						|
# reconstructed_model.summary(line_length=120)
 | 
						|
 | 
						|
# make predictions on all TEST_INDEX
 | 
						|
print(' >>>>>>> START prediction <<<<<<<<<')
 | 
						|
predictions_blur = reconstructed_model.predict(images_list, batch_size=1)
 | 
						|
 | 
						|
############# preprocess ################# 
 | 
						|
# preprocess predictions by removing the blur and making individual blobs 
 | 
						|
print('>>>>>>>> START preprocess')
 | 
						|
 | 
						|
def move_dims(arr):
 | 
						|
    # UMCG numpy dimensions convention: dims = (batch, width, heigth, depth)
 | 
						|
    # Joeran numpy dimensions convention: dims = (batch, depth, heigth, width)
 | 
						|
    arr = np.moveaxis(arr, 3, 1) 
 | 
						|
    arr = np.moveaxis(arr, 3, 2)
 | 
						|
    return arr
 | 
						|
 | 
						|
# Joeran has his numpy arrays ordered differently.
 | 
						|
predictions_blur = move_dims(np.squeeze(predictions_blur))
 | 
						|
segmentations = move_dims(np.squeeze(segmentations))
 | 
						|
predictions = [preprocess_softmax(pred, threshold="dynamic")[0] for pred in predictions_blur]
 | 
						|
 | 
						|
# Remove outer edges 
 | 
						|
zeros = np.zeros(np.shape(predictions))
 | 
						|
test = np.squeeze(predictions)[:,2:-2,2:190,2:190]
 | 
						|
zeros[:,2:-2,2:190,2:190] = test
 | 
						|
predictions = zeros
 | 
						|
 | 
						|
# perform Froc
 | 
						|
metrics = evaluate(y_true=segmentations, y_pred=predictions)
 | 
						|
dump_dict_to_yaml(metrics, YAML_DIR, "froc_metrics_focal_10", verbose=True)
 | 
						|
 | 
						|
 | 
						|
############## save image as example #################
 | 
						|
# save image nmr 2
 | 
						|
img_s = sitk.GetImageFromArray(predictions_blur[2].squeeze())
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/predictions_blur_002_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(predictions[2].squeeze())
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/predictions_002_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(segmentations[2].squeeze())
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/segmentations_002_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(np.transpose(images_list[2,:,:,:,0].squeeze()))
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/t2_002_old.nii.gz")
 | 
						|
 | 
						|
# save image nmr 3
 | 
						|
img_s = sitk.GetImageFromArray(predictions_blur[3].squeeze())
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/predictions_blur_003_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(predictions[3].squeeze())
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/predictions_003_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(segmentations[3].squeeze())
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/segmentations_003_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(np.transpose(images_list[3,:,:,:,0].squeeze()))
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/t2_003_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(np.transpose(images_list[3,:,:,:,1].squeeze()))
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/highb_003_old.nii.gz")
 | 
						|
 | 
						|
# save image nmr 3
 | 
						|
img_s = sitk.GetImageFromArray(predictions_blur[4].squeeze())
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/predictions_blur_004_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(predictions[4].squeeze())
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/predictions_004_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(segmentations[4].squeeze())
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/segmentations_004_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(np.transpose(images_list[4,:,:,:,0].squeeze()))
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/t2_004_old.nii.gz")
 | 
						|
 | 
						|
img_s = sitk.GetImageFromArray(np.transpose(images_list[4,:,:,:,1].squeeze()))
 | 
						|
sitk.WriteImage(img_s, f"{IMAGE_DIR}/highb_004_old.nii.gz") |