Gait variabiliy analysis for CLBP dataset; 1) determine location of turns, 2) create epochs of 1 minute for each participant, 3) calculate the paramters for each minute and overall. Pre-processing controls not the same, script will be pushed later on.
This commit is contained in:
parent
7dc44825a1
commit
115e08f04d
68
DetermineLocationTurnsFunc.m
Normal file
68
DetermineLocationTurnsFunc.m
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
function [locsTurns,FilteredData] = DetermineLocationTurnsFunc(inputData,FS,ApplyRealignment,plotit,Distance)
|
||||||
|
% Description: Determine the location of turns, plot for visual inspection
|
||||||
|
|
||||||
|
% Input: Acc Data (not yet realigned)
|
||||||
|
|
||||||
|
%Realign sensor data to VT-ML-AP frame
|
||||||
|
|
||||||
|
if ApplyRealignment % apply relignment as described in Rispens S, Pijnappels M, van Schooten K, Beek PJ, Daffertshofer A, van Die?n JH (2014).
|
||||||
|
data = inputData(:,[3,2,4]); % reorder data to 1 = V; 2 = ML; 3 = AP
|
||||||
|
% Consistency of gait characteristics as determined from acceleration data collected at different trunk locations. Gait Posture 2014;40(1):187-92.
|
||||||
|
[RealignedAcc, ~] = RealignSensorSignalHRAmp(data, FS);
|
||||||
|
dataAcc = RealignedAcc;
|
||||||
|
end
|
||||||
|
% Filter data
|
||||||
|
[B,A] = butter(2,3/(FS/2),'low'); % Filters data very strongly which is needed to determine turns correctly
|
||||||
|
dataStepDetection = filtfilt(B,A,dataAcc);
|
||||||
|
% Determine steps
|
||||||
|
% Explanation of method: https://nl.mathworks.com/help/supportpkg/beagleboneblue/ref/counting-steps-using-beagleboneblue-hardware-example.html
|
||||||
|
% From website: To convert the XYZ acceleration vectors at each point in time into scalar values,
|
||||||
|
% calculate the magnitude of each vector. This way, you can detect large changes in overall acceleration,
|
||||||
|
% such as steps taken while walking, regardless of device orientation.
|
||||||
|
magfilt = sqrt(sum((dataStepDetection(:,1).^2) + (dataStepDetection(:,2).^2) + (dataStepDetection(:,3).^2), 2));
|
||||||
|
magNoGfilt = magfilt - mean(magfilt);
|
||||||
|
minPeakHeight2 = 1.2*std(magNoGfilt); % based on visual inspection, parameter tuning was performed on standard deviation from MInPeak (used to be 1 SD)
|
||||||
|
[pks, locs] = findpeaks(magNoGfilt, 'MINPEAKHEIGHT', minPeakHeight2); % for step detection
|
||||||
|
numStepsOption2_filt = numel(pks); % counts number of steps;
|
||||||
|
|
||||||
|
diffLocs = diff(locs); % calculates difference in step location
|
||||||
|
avg_diffLocs = mean(diffLocs); % average distance between steps
|
||||||
|
std_diffLocs = std(diffLocs); % standard deviation of distance between steps
|
||||||
|
|
||||||
|
figure;
|
||||||
|
findpeaks(diffLocs, 'MINPEAKHEIGHT', avg_diffLocs, 'MINPEAKDISTANCE',9); % these values have been chosen based on visual inspection of the signal
|
||||||
|
line([1 length(diffLocs)],[avg_diffLocs avg_diffLocs])
|
||||||
|
[pks_diffLocs, locs_diffLocs] = findpeaks(diffLocs, 'MINPEAKHEIGHT', avg_diffLocs,'MINPEAKDISTANCE',10); % values were initially 5
|
||||||
|
locsTurns = [locs(locs_diffLocs), locs(locs_diffLocs+1)];
|
||||||
|
|
||||||
|
magNoGfilt_copy = magNoGfilt;
|
||||||
|
for k = 1: size(locsTurns,1);
|
||||||
|
magNoGfilt_copy(locsTurns(k,1):locsTurns(k,2)) = NaN;
|
||||||
|
end
|
||||||
|
|
||||||
|
% Visualising signal;
|
||||||
|
if plotit
|
||||||
|
figure;
|
||||||
|
subplot(2,1,1)
|
||||||
|
hold on;
|
||||||
|
plot(magNoGfilt,'b')
|
||||||
|
plot(magNoGfilt_copy, 'r');
|
||||||
|
title('Inside Straight: Filtered data with turns highlighted in blue')
|
||||||
|
line([6000,12000,18000,24000,30000,36000;6000,12000,18000,24000,30000,36000],[-4,-4,-4,-4,-4,-4;4,4,4,4,4,4],'LineWidth',2,'Linestyle','--','color','k')
|
||||||
|
% hold on;
|
||||||
|
% for m = 1:size(locsTurns,1)
|
||||||
|
% plot(locsTurns(m),DataStraight.([char(Participants(i))]).LyapunovPerStrideRosen_ML(:,m),'--gs',...
|
||||||
|
% 'LineWidth',2,...
|
||||||
|
% 'MarkerSize',10,...
|
||||||
|
% 'MarkerEdgeColor','g',...
|
||||||
|
% 'MarkerFaceColor',[0.5,0.5,0.5])
|
||||||
|
% end
|
||||||
|
hold off;
|
||||||
|
end
|
||||||
|
% Check if number of turns * 20 m are making sense based on total
|
||||||
|
% distance measured by researcher.
|
||||||
|
disp(['Number of turns detected = ' num2str(size(locsTurns,1))])
|
||||||
|
disp(['Total distance measured by researcher was = ' num2str(Distance)])
|
||||||
|
|
||||||
|
FilteredData = dataAcc;
|
||||||
|
end
|
BIN
Main_GaitVariabilityAnalysis_LD.mlx
Normal file
BIN
Main_GaitVariabilityAnalysis_LD.mlx
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user