add missing .m files for MAIN
This commit is contained in:
parent
0be926128f
commit
c64768e2bd
BIN
ControlsData.mat
Normal file
BIN
ControlsData.mat
Normal file
Binary file not shown.
91
ControlsDetermineLocationTurnsFunc.m
Normal file
91
ControlsDetermineLocationTurnsFunc.m
Normal file
@ -0,0 +1,91 @@
|
||||
function [locsTurns,FilteredData,FootContacts] = ControlsDetermineLocationTurnsFunc(inputData,FS,ApplyRealignment,plotit,ResultStruct)
|
||||
% Description: Determine the location of turns, plot for visual inspection
|
||||
|
||||
% Input: Acc Data (not yet realigned)
|
||||
|
||||
%Realign sensor data to VT-ML-AP frame
|
||||
|
||||
if ApplyRealignment % apply relignment as described in Rispens S, Pijnappels M, van Schooten K, Beek PJ, Daffertshofer A, van Die?n JH (2014).
|
||||
data = inputData(:,[3,2,1]); % NOT THE SAME AS IN THE CLBP DATA; reorder data to 1 = V; 2 = ML; 3 = AP
|
||||
% Consistency of gait characteristics as determined from acceleration data collected at different trunk locations. Gait Posture 2014;40(1):187-92.
|
||||
[RealignedAcc, ~] = RealignSensorSignalHRAmp(data, FS);
|
||||
dataAcc = RealignedAcc;
|
||||
else
|
||||
data = inputData; % Realignment performed in previous stage
|
||||
dataAcc = inputData;
|
||||
end
|
||||
|
||||
% Filter data
|
||||
[B,A] = butter(2,20/(FS/2),'low'); % Filters data very strongly which is needed to determine turns correctly
|
||||
dataStepDetection = filtfilt(B,A,dataAcc);
|
||||
VTAcc = data(:,1);
|
||||
APAcc = data(:,3);
|
||||
|
||||
%% Determine Steps -
|
||||
% USE THE AP ACCELERATION: WIEBREN ZIJLSTRA: ASSESSMENT OF SPATIO-TEMPORAL PARAMTERS DURING UNCONSTRAINED WALKING (2004)
|
||||
|
||||
% In order to run the step detection script we first need to run an autocorrelation function;
|
||||
StrideTimeRange = [0.2 4.0]; % Range to search for stride time (seconds)
|
||||
|
||||
[ResultStruct] = AutocorrStrides(dataStepDetection,FS, StrideTimeRange,ResultStruct); % first guess of stridetimesamples
|
||||
|
||||
% StrideTimeSamples is needed as an input for the stepcountFunc;
|
||||
StrideTimeSamples = ResultStruct.StrideTimeSamples;
|
||||
|
||||
[PksAndLocsCorrected] = StepcountFunc(data,StrideTimeSamples,FS);
|
||||
FootContacts = PksAndLocsCorrected; % (1:2:end,2); previous version
|
||||
numStepsOption2_filt = numel(FootContacts); % counts number of steps;
|
||||
|
||||
%% Determine Turns
|
||||
% To convert the XYZ acceleration vectors at each point in time into scalar values,
|
||||
% calculate the magnitude of each vector. This way, you can detect large changes in overall acceleration,
|
||||
% such as steps taken while walking, regardless of device orientation.
|
||||
magfilt = sqrt(sum((dataStepDetection(:,1).^2) + (dataStepDetection(:,2).^2) + (dataStepDetection(:,3).^2), 2));
|
||||
magNoGfilt = magfilt - mean(magfilt);
|
||||
minPeakHeight2 = 1*std(magNoGfilt); % used to be 2 % based on visual inspection, parameter tuning was performed on *X*standard deviation from MInPeak (used to be 1 SD)
|
||||
[pks, locs] = findpeaks(magNoGfilt, 'MINPEAKHEIGHT', minPeakHeight2,'MINPEAKDISTANCE',0.3*FS); % for step detection
|
||||
numStepsOption2_filt = numel(pks); % counts number of locs for turn detection
|
||||
|
||||
diffLocs = diff(locs); % calculates difference in location magnitude differences
|
||||
avg_diffLocs = mean(diffLocs); % average distance between steps
|
||||
std_diffLocs = std(diffLocs); % standard deviation of distance between steps
|
||||
|
||||
figure;
|
||||
findpeaks(diffLocs, 'MINPEAKHEIGHT', avg_diffLocs, 'MINPEAKDISTANCE',0.2*FS); % these values have been chosen based on visual inspection of the signal
|
||||
line([1 length(diffLocs)],[avg_diffLocs avg_diffLocs])
|
||||
[pks_diffLocs, locs_diffLocs] = findpeaks(diffLocs, 'MINPEAKHEIGHT', avg_diffLocs,'MINPEAKDISTANCE',0.2*FS); % values were initially 5
|
||||
locsTurns = [locs(locs_diffLocs), locs(locs_diffLocs+1)];
|
||||
|
||||
%magNoGfilt_copy = magNoGfilt;
|
||||
VTAcc_copy = data(:,1);
|
||||
APAcc_copy = data(:,3);
|
||||
for k = 1: size(locsTurns,1);
|
||||
VTAcc_copy(locsTurns(k,1):locsTurns(k,2)) = NaN;
|
||||
APAcc_copy(locsTurns(k,1):locsTurns(k,2)) = NaN;
|
||||
end
|
||||
|
||||
% Visualising signal;
|
||||
if plotit
|
||||
figure()
|
||||
subplot(2,1,1)
|
||||
hold on;
|
||||
plot(VTAcc,'b')
|
||||
plot(VTAcc_copy, 'r');
|
||||
title('Inside Straight: Filtered data VT with turns highlighted in blue')
|
||||
line([6000,12000,18000,24000,30000,36000;6000,12000,18000,24000,30000,36000],[5,5,5,5,5,5;10,10,10,10,10,10],'LineWidth',2,'Linestyle','--','color','k')
|
||||
hold on;
|
||||
subplot(2,1,2)
|
||||
plot(APAcc,'g')
|
||||
plot(APAcc_copy, 'r');
|
||||
title('Inside Straight: Filtered data AP with turns highlighted in blue')
|
||||
line([6000,12000,18000,24000,30000,36000;6000,12000,18000,24000,30000,36000],[0,0,0,0,0,0;10,10,10,10,10,10],'LineWidth',2,'Linestyle','--','color','k')
|
||||
hold off;
|
||||
end
|
||||
|
||||
% Check if number of turns * 20 m are making sense based on total
|
||||
% distance measured by researcher.
|
||||
disp(['Number of turns detected = ' num2str(size(locsTurns,1))])
|
||||
%disp(['Total distance measured by researcher was = ' num2str(Distance)])
|
||||
|
||||
FilteredData = dataAcc;
|
||||
end
|
BIN
FINAL_MAP_CLBP_Controls_23052021.xls
Normal file
BIN
FINAL_MAP_CLBP_Controls_23052021.xls
Normal file
Binary file not shown.
BIN
FINAL_NPRSBaseline_Minute_23052021.xls
Normal file
BIN
FINAL_NPRSBaseline_Minute_23052021.xls
Normal file
Binary file not shown.
BIN
FINAL_NPRS_GaitCharacteristics_23052021.xls
Normal file
BIN
FINAL_NPRS_GaitCharacteristics_23052021.xls
Normal file
Binary file not shown.
126
FalseNearestNeighborsSR.m
Normal file
126
FalseNearestNeighborsSR.m
Normal file
@ -0,0 +1,126 @@
|
||||
function fnnM = FalseNearestNeighborsSR(xV,tauV,mV,escape,theiler)
|
||||
% fnnM = FalseNearestNeighbors(xV,tauV,mV,escape,theiler)
|
||||
% FALSENEARESTNEIGHBORS computes the percentage of false nearest neighbors
|
||||
% for a range of delays in 'tauV' and embedding dimensions in 'mV'.
|
||||
% INPUT
|
||||
% xV : Vector of the scalar time series
|
||||
% tauV : A vector of the delay times.
|
||||
% mV : A vector of the embedding dimension.
|
||||
% escape : A factor of escaping from the neighborhood. Default=10.
|
||||
% theiler : the Theiler window to exclude time correlated points in the
|
||||
% search for neighboring points. Default=0.
|
||||
% OUTPUT:
|
||||
% fnnM : A matrix of size 'ntau' x 'nm', where 'ntau' is the number of
|
||||
% given delays and 'nm' is the number of given embedding
|
||||
% dimensions, containing the percentage of false nearest
|
||||
% neighbors.
|
||||
%========================================================================
|
||||
% <FalseNearestNeighbors.m>, v 1.0 2010/02/11 22:09:14 Kugiumtzis & Tsimpiris
|
||||
% This is part of the MATS-Toolkit http://eeganalysis.web.auth.gr/
|
||||
|
||||
%========================================================================
|
||||
% Copyright (C) 2010 by Dimitris Kugiumtzis and Alkiviadis Tsimpiris
|
||||
% <dkugiu@gen.auth.gr>
|
||||
|
||||
%========================================================================
|
||||
% Version: 1.0
|
||||
|
||||
% LICENSE:
|
||||
% This program is free software; you can redistribute it and/or modify
|
||||
% it under the terms of the GNU General Public License as published by
|
||||
% the Free Software Foundation; either version 3 of the License, or
|
||||
% any later version.
|
||||
%
|
||||
% This program is distributed in the hope that it will be useful,
|
||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
% GNU General Public License for more details.
|
||||
%
|
||||
% You should have received a copy of the GNU General Public License
|
||||
% along with this program. If not, see http://www.gnu.org/licenses/>.
|
||||
|
||||
%=========================================================================
|
||||
% Reference : D. Kugiumtzis and A. Tsimpiris, "Measures of Analysis of Time Series (MATS):
|
||||
% A Matlab Toolkit for Computation of Multiple Measures on Time Series Data Bases",
|
||||
% Journal of Statistical Software, in press, 2010
|
||||
|
||||
% Link : http://eeganalysis.web.auth.gr/
|
||||
%=========================================================================
|
||||
% Updates:
|
||||
% Sietse Rispens, January 2012: use a different kdtree algorithm,
|
||||
% searching k nearest neighbours, to improve performance
|
||||
%
|
||||
%=========================================================================
|
||||
fthres = 0.1; % A factor of the data SD to be used as the maximum radius
|
||||
% for searching for valid nearest neighbor.
|
||||
propthres = fthres; % Limit for the proportion of valid points, i.e. points
|
||||
% for which a nearest neighbor was found. If the proporion
|
||||
% of valid points is beyond this limit, do not compute
|
||||
% FNN.
|
||||
|
||||
n = length(xV);
|
||||
if isempty(escape), escape=10; end
|
||||
if isempty(theiler), theiler=0; end
|
||||
% Rescale to [0,1] and add infinitesimal noise to have distinct samples
|
||||
xmin = min(xV);
|
||||
xmax = max(xV);
|
||||
xV = (xV - xmin) / (xmax-xmin);
|
||||
xV = AddNoise(xV,10^(-10));
|
||||
ntau = length(tauV);
|
||||
nm = length(mV);
|
||||
fnnM = NaN*ones(ntau,nm);
|
||||
for itau = 1:ntau
|
||||
tau = tauV(itau);
|
||||
for im=1:nm
|
||||
m = mV(im);
|
||||
nvec = n-m*tau; % to be able to add the component x(nvec+tau) for m+1
|
||||
if nvec-theiler < 2
|
||||
break;
|
||||
end
|
||||
xM = NaN*ones(nvec,m);
|
||||
for i=1:m
|
||||
xM(:,m-i+1) = xV(1+(i-1)*tau:nvec+(i-1)*tau);
|
||||
end
|
||||
% k-d-tree data structure of the training set for the given m
|
||||
TreeRoot=kdtree_build(xM);
|
||||
% For each target point, find the nearest neighbor, and check whether
|
||||
% the distance increase over the escape distance by adding the next
|
||||
% component for m+1.
|
||||
idxV = NaN*ones(nvec,1);
|
||||
distV = NaN*ones(nvec,1);
|
||||
k0 = 2; % The initial number of nearest neighbors to look for
|
||||
kmax = min(2*theiler + 2,nvec); % The maximum number of nearest neighbors to look for
|
||||
for i=1:nvec
|
||||
tarV = xM(i,:);
|
||||
iV = [];
|
||||
k=k0;
|
||||
kmaxreached = 0;
|
||||
while isempty(iV) && ~kmaxreached
|
||||
[neiindV, neidisV] = kdtree_k_nearest_neighbors(TreeRoot,tarV,k);
|
||||
% [neiM,neidisV,neiindV]=kdrangequery(TreeRoot,tarV,rthres*sqrt(m));
|
||||
[oneidisV,oneiindV]=sort(neidisV);
|
||||
neiindV = neiindV(oneiindV);
|
||||
neidisV = neidisV(oneiindV);
|
||||
iV = find(abs(neiindV(1)-neiindV(2:end))>theiler);
|
||||
if k >= kmax
|
||||
kmaxreached = 1;
|
||||
elseif isempty(iV)
|
||||
k = min(kmax,k*2);
|
||||
end
|
||||
end
|
||||
if ~isempty(iV)
|
||||
idxV(i) = neiindV(iV(1)+1);
|
||||
distV(i) = neidisV(iV(1)+1);
|
||||
end
|
||||
end % for i
|
||||
iV = find(~isnan(idxV));
|
||||
nproper = length(iV);
|
||||
% Compute fnn only if there is a sufficient number of target points
|
||||
% having nearest neighbor (in R^m) within the threshold distance
|
||||
if nproper>propthres*nvec
|
||||
nnfactorV = 1+(xV(iV+m*tau)-xV(idxV(iV)+m*tau)).^2./distV(iV).^2;
|
||||
fnnM(itau,im) = length(find(nnfactorV > escape^2))/nproper;
|
||||
end
|
||||
kdtree_delete(TreeRoot); % Free the pointer to k-d-tree
|
||||
end
|
||||
end
|
210
GaitOutcomesTrunkAccFuncLD.m
Normal file
210
GaitOutcomesTrunkAccFuncLD.m
Normal file
@ -0,0 +1,210 @@
|
||||
function [ResultStruct] = GaitOutcomesTrunkAccFuncLD(inputData,FS,LegLength,WindowLen,ApplyRealignment,ApplyRemoveSteps)
|
||||
|
||||
% Description: Trunk analysis of Iphone data without the need for step detection
|
||||
% CL Nov 2019
|
||||
% Adapted IH feb-april 2020
|
||||
|
||||
% koloms data of smartphone
|
||||
% 1st column is time data;
|
||||
% 2nd column is X, medio-lateral: + left, - right
|
||||
% 3rd column is Y, vertical: + downwards, - upwards
|
||||
% 4th column is Z, anterior- posterior : + forwards, - backwards
|
||||
|
||||
%% Input Trunk accelerations during locomotion in VT, ML, AP direction
|
||||
% InputData: Acceleration signal with time and accelerations in VT,ML and
|
||||
% AP direction.
|
||||
% FS: sample frequency of the Accdata
|
||||
% LegLength: length of the leg of the participant in m;
|
||||
|
||||
|
||||
%% Output
|
||||
% ResultStruct: structure coninting all outcome measured calculated
|
||||
% Spectral parameters, spatiotemporal gait parameters, non-linear
|
||||
% parameters
|
||||
% fields and subfields: include the multiple measurements of a subject
|
||||
|
||||
%% Literature
|
||||
% Richman & Moorman, 2000; [ sample entropy]
|
||||
% Bisi & Stagni Gait & Posture 2016, 47 (6) 37-42
|
||||
% Kavagnah et al., Eur J Appl Physiol 2005 94: 468?475; Human Movement Science 24(2005) 574?587 [ synchrony]
|
||||
% Moe-Nilsen J Biomech 2004 37, 121-126 [ autorcorrelation step regularity and symmetry
|
||||
% Kobsar et al. Gait & Posture 2014 39, 553?557 [ synchrony ]
|
||||
% Rispen et al; Gait & Posture 2014, 40, 187 - 192 [realignment axes]
|
||||
% Zijlstra & HofGait & Posture 2003 18,2, 1-10 [spatiotemporal gait variables]
|
||||
% Lamoth et al, 2002 [index of harmonicity]
|
||||
% Costa et al. 2003 Physica A 330 (2003) 5360 [ multiscale entropy]
|
||||
% Cignetti F, Decker LM, Stergiou N. Ann Biomed Eng. 2012
|
||||
% May;40(5):1122-30. doi: 10.1007/s10439-011-0474-3. Epub 2011 Nov 25. [
|
||||
% Wofl vs. Rosenstein Lyapunov]
|
||||
|
||||
|
||||
%% Settings
|
||||
Gr = 9.81; % Gravity acceleration, multiplication factor for accelerations
|
||||
StrideFreqEstimate = 1.00; % Used to set search for stride frequency from 0.5*StrideFreqEstimate until 2*StrideFreqEstimate
|
||||
StrideTimeRange = [0.2 4.0]; % Range to search for stride time (seconds)
|
||||
IgnoreMinMaxStrides = 0.10; % Number or percentage of highest&lowest values ignored for improved variability estimation
|
||||
N_Harm = 12; % Number of harmonics used for harmonic ratio, index of harmonicity and phase fluctuation
|
||||
LowFrequentPowerThresholds = ...
|
||||
[0.7 1.4]; % Threshold frequencies for estimation of low-frequent power percentages
|
||||
Lyap_m = 7; % Embedding dimension (used in Lyapunov estimations)
|
||||
Lyap_FitWinLen = round(60/100*FS); % Fitting window length (used in Lyapunov estimations Rosenstein's method)
|
||||
Sen_m = 5; % Dimension, the length of the subseries to be matched (used in sample entropy estimation)
|
||||
Sen_r = 0.3; % Tolerance, the maximum distance between two samples to qualify as match, relative to std of DataIn (used in sample entropy estimation)
|
||||
NStartEnd = [100];
|
||||
M = 5; % maximum template length
|
||||
ResultStruct = struct();
|
||||
|
||||
%% Filter and Realign Accdata
|
||||
|
||||
% Apply Realignment & Filter data
|
||||
|
||||
if ApplyRealignment % apply relignment as described in Rispens S, Pijnappels M, van Schooten K, Beek PJ, Daffertshofer A, van Die?n JH (2014).
|
||||
data = inputData(:, [3,2,4]); % reorder data to 1 = V; 2= ML, 3 = AP%
|
||||
% Consistency of gait characteristics as determined from acceleration data collected at different trunk locations. Gait Posture 2014;40(1):187-92.
|
||||
[RealignedAcc, ~] = RealignSensorSignalHRAmp(data, FS);
|
||||
dataAcc = RealignedAcc;
|
||||
[B,A] = butter(2,20/(FS/2),'low');
|
||||
dataAcc_filt = filtfilt(B,A,dataAcc);
|
||||
else % we asume tat data is already reorderd to 1 = V; 2= ML, 3 = AP in an earlier stage;
|
||||
[B,A] = butter(2,20/(FS/2),'low');
|
||||
dataAcc = inputData;
|
||||
dataAcc_filt = filtfilt(B,A,dataAcc);
|
||||
end
|
||||
|
||||
|
||||
%% Step dectection
|
||||
% Determines the number of steps in the signal so that the first 30 and last 30 steps in the signal can be removed
|
||||
|
||||
if ApplyRemoveSteps
|
||||
|
||||
% In order to run the step detection script we first need to run an autocorrelation function;
|
||||
[ResultStruct] = AutocorrStrides(dataAcc_filt,FS, StrideTimeRange,ResultStruct);
|
||||
|
||||
% StrideTimeSamples is needed as an input for the stepcountFunc;
|
||||
StrideTimeSamples = ResultStruct.StrideTimeSamples;
|
||||
|
||||
% Calculate the number of steps;
|
||||
[PksAndLocsCorrected] = StepcountFunc(dataAcc_filt,StrideTimeSamples,FS);
|
||||
% This function selects steps based on negative and positive values.
|
||||
% However to determine the steps correctly we only need one of these;
|
||||
LocsSteps = PksAndLocsCorrected(1:2:end,2);
|
||||
|
||||
%% Cut data & remove currents results
|
||||
% Remove 1 step in the beginning and end of data (comment Bert Otten)
|
||||
dataAccCut = dataAcc(LocsSteps(1):LocsSteps(end-1),:);
|
||||
dataAccCut_filt = dataAcc_filt(LocsSteps(1):LocsSteps(end-1),:);
|
||||
|
||||
% Clear currently saved results from Autocorrelation Analysis
|
||||
|
||||
clear ResultStruct;
|
||||
clear PksAndLocsCorrected;
|
||||
clear LocsSteps;
|
||||
|
||||
else;
|
||||
dataAccCut = dataAcc;
|
||||
dataAccCut_filt = dataAcc_filt;
|
||||
end
|
||||
|
||||
%% Calculate stride parameters
|
||||
ResultStruct = struct; % create empty struct
|
||||
|
||||
% Run function AutoCorrStrides, Outcomeparameters: StrideRegularity,RelativeStrideVariability,StrideTimeSamples,StrideTime
|
||||
[ResultStruct] = AutocorrStrides(dataAccCut_filt,FS, StrideTimeRange,ResultStruct);
|
||||
StrideTimeSamples = ResultStruct.StrideTimeSamples; % needed as input for other functions
|
||||
|
||||
% Calculate Step symmetry --> method 1
|
||||
ij = 1;
|
||||
dirSymm = [1,3]; % Gait Synmmetry is only informative in AP/V direction: See Tura A, Raggi M, Rocchi L, Cutti AG, Chiari L: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. J Neuroeng Rehabil 2010, 7:4.
|
||||
|
||||
for jk=1:length(dirSymm)
|
||||
[C, lags] = AutocorrRegSymmSteps(dataAccCut_filt(:,dirSymm(jk)));
|
||||
[Ad,p] = findpeaks(C,'MinPeakProminence',0.2, 'MinPeakHeight', 0.2);
|
||||
|
||||
if size(Ad,1) > 1
|
||||
Ad1 = Ad(1);
|
||||
Ad2 = Ad(2);
|
||||
GaitSymm(:,ij) = abs((Ad1-Ad2)/mean([Ad1+Ad2]))*100;
|
||||
else
|
||||
GaitSymm(:,ij) = NaN;
|
||||
end
|
||||
ij = ij +1;
|
||||
end
|
||||
% Save outcome in struct;
|
||||
ResultStruct.GaitSymm_V = GaitSymm(1);
|
||||
ResultStruct.GaitSymm_AP = GaitSymm(2);
|
||||
|
||||
% Calculate Step symmetry --> method 2
|
||||
[PksAndLocsCorrected] = StepcountFunc(dataAccCut_filt,StrideTimeSamples,FS);
|
||||
LocsSteps = PksAndLocsCorrected(2:2:end,2);
|
||||
|
||||
if rem(size(LocsSteps,1),2) == 0; % is number of steps is even
|
||||
LocsSteps2 = LocsSteps(1:2:end);
|
||||
else
|
||||
LocsSteps2 = LocsSteps(3:2:end);
|
||||
end
|
||||
|
||||
LocsSteps1 = LocsSteps(2:2:end);
|
||||
DiffLocs2 = diff(LocsSteps2);
|
||||
DiffLocs1 = diff(LocsSteps1);
|
||||
StepTime2 = DiffLocs2(1:end-1)/FS; % leave last one out because it is higher
|
||||
StepTime1 = DiffLocs1(1:end-1)/FS;
|
||||
SI = abs((2*(StepTime2-StepTime1))./(StepTime2+StepTime1))*100;
|
||||
ResultStruct.GaitSymmIndex = nanmean(SI);
|
||||
|
||||
%% Calculate spatiotemporal stride parameters
|
||||
|
||||
% Measures from height variation by double integration of VT accelerations and high-pass filtering
|
||||
[ResultStruct] = SpatioTemporalGaitParameters(dataAccCut_filt,StrideTimeSamples,ApplyRealignment,LegLength,FS,IgnoreMinMaxStrides,ResultStruct);
|
||||
|
||||
%% Measures derived from spectral analysis
|
||||
|
||||
AccVectorLen = sqrt(sum(dataAccCut_filt(:,1:3).^2,2));
|
||||
[ResultStruct] = SpectralAnalysisGaitfunc(dataAccCut_filt,WindowLen,FS,N_Harm,LowFrequentPowerThresholds,AccVectorLen,ResultStruct);
|
||||
|
||||
|
||||
%% Calculation non-linear parameters;
|
||||
|
||||
% cut into windows of size WindowLen
|
||||
N_Windows = floor(size(dataAccCut,1)/WindowLen);
|
||||
N_SkipBegin = ceil((size(dataAccCut,1)-N_Windows*WindowLen)/2);
|
||||
LyapunovWolf = nan(N_Windows,3);
|
||||
LyapunovRosen = nan(N_Windows,3);
|
||||
SE= nan(N_Windows,3);
|
||||
|
||||
for WinNr = 1:N_Windows;
|
||||
AccWin = dataAccCut(N_SkipBegin+(WinNr-1)*WindowLen+(1:WindowLen),:);
|
||||
for j=1:3
|
||||
[LyapunovWolf(WinNr,j),~] = CalcMaxLyapWolfFixedEvolv(AccWin(:,j),FS,struct('m',Lyap_m));
|
||||
[LyapunovRosen(WinNr,j),outpo] = CalcMaxLyapConvGait(AccWin(:,j),FS,struct('m',Lyap_m,'FitWinLen',Lyap_FitWinLen));
|
||||
[SE(WinNr,j)] = funcSampleEntropy(AccWin(:,j), Sen_m, Sen_r);
|
||||
% no correction for FS; SE does increase with higher FS but effect is considered negligible as range is small (98-104HZ). Might consider updating r to account for larger ranges.
|
||||
end
|
||||
end
|
||||
|
||||
LyapunovWolf = nanmean(LyapunovWolf,1);
|
||||
LyapunovRosen = nanmean(LyapunovRosen,1);
|
||||
SampleEntropy = nanmean(SE,1);
|
||||
|
||||
ResultStruct.LyapunovWolf_V = LyapunovWolf(1);
|
||||
ResultStruct.LyapunovWolf_ML = LyapunovWolf(2);
|
||||
ResultStruct.LyapunovWolf_AP = LyapunovWolf(3);
|
||||
ResultStruct.LyapunovRosen_V = LyapunovRosen(1);
|
||||
ResultStruct.LyapunovRosen_ML = LyapunovRosen(2);
|
||||
ResultStruct.LyapunovRosen_AP = LyapunovRosen(3);
|
||||
ResultStruct.SampleEntropy_V = SampleEntropy(1);
|
||||
ResultStruct.SampleEntropy_ML = SampleEntropy(2);
|
||||
ResultStruct.SampleEntropy_AP = SampleEntropy(3);
|
||||
|
||||
if isfield(ResultStruct,'StrideFrequency')
|
||||
LyapunovPerStrideWolf = LyapunovWolf/ResultStruct.StrideFrequency;
|
||||
LyapunovPerStrideRosen = LyapunovRosen/ResultStruct.StrideFrequency;
|
||||
end
|
||||
|
||||
ResultStruct.LyapunovPerStrideWolf_V = LyapunovPerStrideWolf(1);
|
||||
ResultStruct.LyapunovPerStrideWolf_ML = LyapunovPerStrideWolf(2);
|
||||
ResultStruct.LyapunovPerStrideWolf_AP = LyapunovPerStrideWolf(3);
|
||||
ResultStruct.LyapunovPerStrideRosen_V = LyapunovPerStrideRosen(1);
|
||||
ResultStruct.LyapunovPerStrideRosen_ML = LyapunovPerStrideRosen(2);
|
||||
ResultStruct.LyapunovPerStrideRosen_AP = LyapunovPerStrideRosen(3);
|
||||
|
||||
end
|
BIN
GaitVarOutcomesCombined_230221.mat
Normal file
BIN
GaitVarOutcomesCombined_230221.mat
Normal file
Binary file not shown.
55
Hratio.m
Normal file
55
Hratio.m
Normal file
@ -0,0 +1,55 @@
|
||||
function [Hratio,wb]=Hratio(x,fmax,numfreq)
|
||||
% function [HIndex]=IndexOfHarmonicity(x,numfreq);
|
||||
%
|
||||
% INPUT, signal, fmax is max frequency that can be considered as main
|
||||
% frequency = around 1 for stride and around 2 for steps.
|
||||
% numfreq = number of superharmonics in analysis
|
||||
% OUTPUT: Harmoncity Index and mainfrequency
|
||||
% PLOT: with no output a plot is generated
|
||||
% CALLS: WndMainFreq.m
|
||||
% CL 2016
|
||||
|
||||
|
||||
if nargin<3 || isempty(numfreq), numfreq = 10; end
|
||||
|
||||
fs = 100;% sample frequency
|
||||
le=length(x);
|
||||
temp=[];
|
||||
n=10*length(x);
|
||||
ws=fix(length(x)/2);
|
||||
no=fix(0.99*ws);
|
||||
|
||||
[Px,fx]=spectrum2(x,n,no,boxcar(le),100,'mean');
|
||||
Px = Px/sum(Px); % All power spectral densities were normalized by dividing the power by the sum of the total power spectrum, which equals the variance.
|
||||
|
||||
% select frequency
|
||||
wb = WindMainFreq(x,100,fmax) ; % mainfrequency frequency
|
||||
wbr= wb + 0.055; % % basis mainfrequency + tail
|
||||
wbl = wb - 0.055;
|
||||
|
||||
wind=find(fx >=wbl & fx<= wbr); % index van basisfrequentie
|
||||
|
||||
PI_0=sum(Px(wind));
|
||||
|
||||
temp=PI_0;
|
||||
for k=1:numfreq;
|
||||
w=wb*(k+1);
|
||||
wr=w+0.055;
|
||||
wl=w-0.055;
|
||||
wInd=find(fx >=wl & fx<=wr);
|
||||
if nargout ==0; % controle
|
||||
plot(fx,Px,'r'); hold on;
|
||||
set(gca','XLim', [0 6],'FontSize', 8)
|
||||
xlabel('Frequency (Hz)'); ylabel('Power');
|
||||
plot(wb,max(Px),'r.','MarkerSize', 10),
|
||||
plot(wbr,0,'c.'); plot(wbl,0,'c.');
|
||||
plot(w,0,'r.','MarkerSize', 10)
|
||||
plot(wl,0,'c.'); plot(wr,0,'c.');
|
||||
end
|
||||
|
||||
PI=sum(Px(wInd));
|
||||
temp=[temp; PI];
|
||||
|
||||
end
|
||||
|
||||
Hratio = sum(temp(1:2:end-1))/sum(temp(2:2:end));
|
54
IndexOfHarmonicity.m
Normal file
54
IndexOfHarmonicity.m
Normal file
@ -0,0 +1,54 @@
|
||||
function [HIndex,wb]=IndexOfHarmonicity(x,fmax,numfreq)
|
||||
% function [HIndex]=IndexOfHarmonicity(x,numfreq);
|
||||
%
|
||||
% INPUT, signal, fmax is max frequency that can be considered as main
|
||||
% frequency = around 1 for stride and around 2 for steps.
|
||||
% numfreq = number of superharmonics in analysis
|
||||
% OUTPUT: Harmoncity Index and mainfrequency
|
||||
% PLOT: with no output a plot is generated
|
||||
% CALLS: WndMainFreq.m
|
||||
% CL 2016
|
||||
|
||||
|
||||
if nargin<3 || isempty(numfreq), numfreq = 10; end
|
||||
|
||||
fs = 100;% sample frequency
|
||||
le=length(x);
|
||||
temp=[];
|
||||
n=10*length(x);
|
||||
ws=fix(length(x)/2);
|
||||
no=fix(0.99*ws);
|
||||
|
||||
[Px,fx]=spectrum2(x,n,no,boxcar(le),100,'mean');
|
||||
Px = Px/sum(Px); % All power spectral densities were normalized by dividing the power by the sum of the total power spectrum, which equals the variance.
|
||||
|
||||
% select frequency
|
||||
wb = WindMainFreq(x,100,fmax) ; % mainfrequency frequency
|
||||
wbr= wb + 0.055; % % basis mainfrequency + tail
|
||||
wbl = wb - 0.055;
|
||||
|
||||
wind=find(fx >=wbl & fx<= wbr); % index van basisfrequentie
|
||||
|
||||
PI_0=sum(Px(wind));
|
||||
|
||||
temp=PI_0;
|
||||
for k=1:numfreq;
|
||||
w=wb*(k+1);
|
||||
wr=w+0.055;
|
||||
wl=w-0.055;
|
||||
wInd=find(fx >=wl & fx<=wr);
|
||||
if nargout ==0; % controle
|
||||
plot(fx,Px,'r'); hold on;
|
||||
set(gca','XLim', [0 6],'FontSize', 8)
|
||||
xlabel('Frequency (Hz)'); ylabel('Power');
|
||||
plot(wb,max(Px),'r.','MarkerSize', 10),
|
||||
plot(wbr,0,'c.'); plot(wbl,0,'c.');
|
||||
plot(w,0,'r.','MarkerSize', 10)
|
||||
plot(wl,0,'c.'); plot(wr,0,'c.');
|
||||
end
|
||||
|
||||
PI=sum(Px(wInd));
|
||||
temp=[temp; PI];
|
||||
|
||||
end
|
||||
HIndex=PI_0/sum(temp);
|
26
WindMainFreq.m
Normal file
26
WindMainFreq.m
Normal file
@ -0,0 +1,26 @@
|
||||
function Omega=WindMainFreq(x,fs,fmax);
|
||||
% function Omega=WindMainFreq(x,fs,fmax);
|
||||
%INPUT: x = signal; fs = sample frequency; fmax = max frequency for
|
||||
%mainfrequency
|
||||
% OUTPUT = mainfrequency Omega
|
||||
% CALSS: spectrum2.m
|
||||
% PLOT : with no outtput [] generates plot
|
||||
|
||||
if nargin<3 || isempty(fmax), fmax = 4; end
|
||||
n=10*length(x);
|
||||
ws=fix(length(x)/2);
|
||||
no=fix(0.99*ws);
|
||||
|
||||
[p,f]=spectrum2(x,n,no,hamming(ws),fs,'mean');
|
||||
p=p/sum(p);
|
||||
aa=find(f>0.5 & f<fmax);
|
||||
[a,b]=max(p(aa));
|
||||
Omega=f(b+aa(1)-1);
|
||||
if nargout ==0;
|
||||
ii=find(f(:,1)<=fmax);
|
||||
f=f(1:length(ii),:);
|
||||
p=p(1:length(ii),:);
|
||||
plot(f,p,'b');hold on;
|
||||
plot(Omega,max(p(aa)),'m.','MarkerSize', 15); %check w0
|
||||
end
|
||||
|
68
cross_sampen.m
Normal file
68
cross_sampen.m
Normal file
@ -0,0 +1,68 @@
|
||||
function [e,A,B]=cross_sampen(x,y,M,r,sflag);
|
||||
%function [e,A,B]=cross_sampen(x,y,M,r);
|
||||
%
|
||||
% The Cross-sample Entropy (Cross-SampEn) quantified the degree of synchronization between AP and ML, AP and V, and ML and V accelerations.
|
||||
% Cross-SampEn is the negative natural logarithm of the conditional probability that epochs with length m that match point-wise
|
||||
% in the two related signals, repeat itself for m+1 points, within a tolerance of r (in the present study m = 5 and r = 0.3)
|
||||
%Input
|
||||
%
|
||||
%x,y input data
|
||||
%M maximum template length
|
||||
%r matching tolerance
|
||||
%sflag flag to standardize signals(default yes/sflag=1)
|
||||
%
|
||||
%Output
|
||||
%
|
||||
%e sample entropy estimates for m=0,1,...,M-1
|
||||
%A number of matches for m=1,...,M
|
||||
%B number of matches for m=0,...,M-1 excluding last point
|
||||
|
||||
|
||||
if ~exist('sflag')|isempty(sflag),sflag=1;end
|
||||
y=y(:);
|
||||
x=x(:);
|
||||
ny=length(y);
|
||||
nx=length(x);
|
||||
N=nx;
|
||||
if sflag>0
|
||||
y=y-mean(y);
|
||||
sy=sqrt(mean(y.^2));
|
||||
y=y/sy;
|
||||
x=x-mean(x);
|
||||
sx=sqrt(mean(x.^2));
|
||||
x=x/sx;
|
||||
end
|
||||
|
||||
lastrun=zeros(nx,1);
|
||||
run=zeros(nx,1);
|
||||
A=zeros(M,1);
|
||||
B=zeros(M,1);
|
||||
p=zeros(M,1);
|
||||
e=zeros(M,1);
|
||||
|
||||
|
||||
for i=1:ny
|
||||
for j=1:nx
|
||||
if abs(x(j)-y(i))<r
|
||||
run(j)=lastrun(j)+1;
|
||||
M1=min(M,run(j));
|
||||
for m=1:M1
|
||||
A(m)=A(m)+1;
|
||||
if (i<ny)&(j<nx)
|
||||
B(m)=B(m)+1;
|
||||
end
|
||||
end
|
||||
else
|
||||
run(j)=0;
|
||||
end
|
||||
end
|
||||
for j=1:nx
|
||||
lastrun(j)=run(j);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
N=ny*nx;
|
||||
B=[N;B(1:(M-1))];
|
||||
p=A./B;
|
||||
e=-log(p);
|
BIN
delta_NRPS_Gaitoutcomes.xlsx
Normal file
BIN
delta_NRPS_Gaitoutcomes.xlsx
Normal file
Binary file not shown.
28
msentropy.m
Normal file
28
msentropy.m
Normal file
@ -0,0 +1,28 @@
|
||||
% Function for calculating multiscale entropy
|
||||
% input: signal
|
||||
% m: match point(s)
|
||||
% r: matching tolerance
|
||||
% factor: number of scale factor
|
||||
% sampenc is available at http://people.ece.cornell.edu/land/PROJECTS/Complexity/sampenc.m
|
||||
%
|
||||
% Multi-scale sample Entropy (Mscale-En) is an indicator of gait predictability. Multi-scale entropy takes the
|
||||
% complexity of a system into account by calculating the
|
||||
% predictability of a signal over time scales with increasing
|
||||
% length. A ‘coarse-graining’ process is applied to the acceleration signals; non-overlapping windows of data
|
||||
% points with an increasing length τ are constructed, with
|
||||
% τ representing the time scale with a tolerance of r (in the
|
||||
% present study τ = 7 and r = 0.2). A complete predictable
|
||||
% signal will adopt a Mscale-En value of 0 [29].
|
||||
|
||||
function e = msentropy(input,m,r,factor)
|
||||
|
||||
y=input;
|
||||
y=y-mean(y);
|
||||
y=y/std(y);
|
||||
|
||||
for i=1:factor
|
||||
s=coarsegraining(y,i); % dont have this function yet.
|
||||
sampe=sampenc(s,m+1,r);
|
||||
e(i)=sampe(m+1);
|
||||
end
|
||||
e=e';
|
427
spectrum2.m
Normal file
427
spectrum2.m
Normal file
@ -0,0 +1,427 @@
|
||||
function [Spec,f,SpecConf] = spectrum2(varargin)
|
||||
%SPECTRUM Power spectrum estimate of one or two data sequences.
|
||||
% P=SPECTRUM2(X,NFFT,NOVERLAP,WIND) estimates the Power Spectral Density of
|
||||
% signal vector(s) X using Welch's averaged periodogram method. X must be a
|
||||
% set of column vectors. They are divided into overlapping sections, each of
|
||||
% which is detrended and windowed by the WINDOW parameter, then zero padded
|
||||
% to length NFFT. The magnitude squared of the length NFFT DFTs of the sec-
|
||||
% tions are averaged to form Pxx. P is a two times SIZE(X,2) column matrix
|
||||
% P = [Pxx Pxxc]; the second half of columns Pxxc are the 95% confidence
|
||||
% intervals. The number of rows of P is NFFT/2+1 for NFFT even, (NFFT+1)/2
|
||||
% for NFFT odd, or NFFT if the signal X is complex. If you specify a scalar
|
||||
% for WINDOW, a Hanning window of that length is used.
|
||||
%
|
||||
% [P,F] = SPECTRUM2(X,NFFT,NOVERLAP,WINDOW,Fs) given a sampling frequency
|
||||
% Fs returns a vector of frequencies the same length as Pxx at which the
|
||||
% PSD is estimated. PLOT(F,P(:,1:end/2)) plots the power spectrum estimate
|
||||
% versus true frequency.
|
||||
%
|
||||
% [P, F] = SPECTRUM2(X,NFFT,NOVERLAP,WINDOW,Fs,Pr) where Pr is a scalar
|
||||
% between 0 and 1, overrides the default 95% confidence interval and
|
||||
% returns the Pr*100% confidence interval for Pxx instead.
|
||||
%
|
||||
% SPECTRUM2(X) with no output arguments plots the PSD in the current
|
||||
% figure window, with confidence intervals.
|
||||
%
|
||||
% The default values for the parameters are NFFT = 256 (or SIZE(X,1),
|
||||
% whichever is smaller), NOVERLAP = 0, WINDOW = HANNING(NFFT), Fs = 2,
|
||||
% and Pr = .95. You can obtain a default parameter by leaving it out
|
||||
% or inserting an empty matrix [], e.g. SPECTRUM(X,[],128).
|
||||
%
|
||||
% P = SPECTRUM2(X,Y) performs spectral analysis of the two times SIZE(X,2)
|
||||
% sequences X and Y using the Welch method. SPECTRUM returns the 8 times
|
||||
% SIZE(X,2)column array
|
||||
% P = [Pxx Pyy Pxy Txy Cxy Pxxc Pyyc Pxyc]
|
||||
% where
|
||||
% Pxx = X-vector power spectral density
|
||||
% Pyy = Y-vector power spectral density
|
||||
% Pxy = Cross spectral density
|
||||
% Txy = Complex transfer function from X to Y = Pxy./Pxx
|
||||
% Cxy = Coherence function between X and Y = (abs(Pxy).^2)./(Pxx.*Pyy)
|
||||
% Pxxc,Pyyc,Pxyc = Confidence range.
|
||||
% All input and output options are otherwise exactly the same as for the
|
||||
% single input case.
|
||||
%
|
||||
% SPECTRUM2(X,Y) with no output arguments will plot Pxx, Pyy, abs(Txy),
|
||||
% angle(Txy) and Cxy in sequence, pausing between plots.
|
||||
%
|
||||
% SPECTRUM2(X,...,DFLAG), where DFLAG can be 'linear', 'mean' or 'none',
|
||||
% specifies a detrending mode for the prewindowed sections of X (and Y).
|
||||
% DFLAG can take the place of any parameter in the parameter list
|
||||
% (besides X) as long as it is last, e.g. SPECTRUM(X,'none');
|
||||
%
|
||||
% See also SPECTRUM, PSD, CSD, TFE, COHERE, SPECGRAM, SPECPLOT, DETREND,
|
||||
% PMTM, PMUSIC.
|
||||
% ETFE, SPA, and ARX in the Identification Toolbox.
|
||||
|
||||
% The units on the power spectra Pxx and Pyy are such that, using
|
||||
% Parseval's theorem:
|
||||
%
|
||||
% SUM(Pxx)/LENGTH(Pxx) = SUM(X.^2)/size(x,1) = COV(X)
|
||||
%
|
||||
% The RMS value of the signal is the square root of this.
|
||||
% If the input signal is in Volts as a function of time, then
|
||||
% the units on Pxx are Volts^2*seconds = Volt^2/Hz.
|
||||
%
|
||||
% Here are the covariance, RMS, and spectral amplitude values of
|
||||
% some common functions:
|
||||
% Function Cov=SUM(Pxx)/LENGTH(Pxx) RMS Pxx
|
||||
% a*sin(w*t) a^2/2 a/sqrt(2) a^2*LENGTH(Pxx)/4
|
||||
%Normal: a*rand(t) a^2 a a^2
|
||||
%Uniform: a*rand(t) a^2/12 a/sqrt(12) a^2/12
|
||||
%
|
||||
% For example, a pure sine wave with amplitude A has an RMS value
|
||||
% of A/sqrt(2), so A = SQRT(2*SUM(Pxx)/LENGTH(Pxx)).
|
||||
%
|
||||
% See Page 556, A.V. Oppenheim and R.W. Schafer, Digital Signal
|
||||
% Processing, Prentice-Hall, 1975.
|
||||
|
||||
error(nargchk(1,8,nargin))
|
||||
[msg,x,y,nfft,noverlap,window,Fs,p,dflag]=specchk2(varargin);
|
||||
error(msg)
|
||||
|
||||
|
||||
if isempty(p),
|
||||
p = .95; % default confidence interval even if not asked for
|
||||
end
|
||||
|
||||
n = size(x,1); % Number of data points
|
||||
ns = size(x,2); % Number of signals
|
||||
nwind = length(window);
|
||||
if n < nwind % zero-pad x (and y) if length less than the window length
|
||||
x(nwind,:)=0; n=nwind;
|
||||
if ~isempty(y), y(nwind)=0; end
|
||||
end
|
||||
|
||||
k = fix((n-noverlap)/(nwind-noverlap)); % Number of windows
|
||||
index = 1:nwind;
|
||||
KMU = k*norm(window)^2; % Normalizing scale factor ==> asymptotically unbiased
|
||||
% KMU = k*sum(window)^2;% alt. Nrmlzng scale factor ==> peaks are about right
|
||||
|
||||
if (isempty(y)) % Single sequence case.
|
||||
Pxx = zeros(nfft,ns); Pxx2 = zeros(nfft,ns);
|
||||
for i=1:k
|
||||
for l=1:ns
|
||||
if strcmp(dflag,'linear')
|
||||
xw = window.*detrend(x(index,l));
|
||||
elseif strcmp(dflag,'none')
|
||||
xw = window.*(x(index,l));
|
||||
else
|
||||
xw = window.*detrend(x(index,l),0);
|
||||
end
|
||||
Xx = abs(fft(xw,nfft)).^2;
|
||||
Pxx(:,l) = Pxx(:,l) + Xx;
|
||||
Pxx2(:,l) = Pxx2(:,l) + abs(Xx).^2;
|
||||
end
|
||||
index = index + (nwind - noverlap);
|
||||
end
|
||||
% Select first half
|
||||
if ~any(any(imag(x)~=0)), % if x and y are not complex
|
||||
if rem(nfft,2), % nfft odd
|
||||
select = [1:(nfft+1)/2];
|
||||
else
|
||||
select = [1:nfft/2+1]; % include DC AND Nyquist
|
||||
end
|
||||
else
|
||||
select = 1:nfft;
|
||||
end
|
||||
Pxx = Pxx(select,:);
|
||||
Pxx2 = Pxx2(select,:);
|
||||
cPxx = zeros(size(Pxx));
|
||||
if k > 1
|
||||
c = (k.*Pxx2-abs(Pxx).^2)./(k-1);
|
||||
c = max(c,zeros(size(Pxx)));
|
||||
cPxx = sqrt(c);
|
||||
end
|
||||
ff = sqrt(2)*erfinv(p); % Equal-tails.
|
||||
Pxxc = ff.*cPxx/KMU;
|
||||
P = Pxx/KMU;
|
||||
Pc = Pxxc;
|
||||
else
|
||||
Pxx = zeros(nfft,ns); % Dual sequence case.
|
||||
Pxy = Pxx; Pxx2 = Pxx; Pxy2 = Pxx;
|
||||
Pyy = zeros(nfft,1); Pyy2 = Pyy;
|
||||
for i=1:k
|
||||
if strcmp(dflag,'linear')
|
||||
yw = window.*detrend(y(index));
|
||||
elseif strcmp(dflag,'none')
|
||||
yw = window.*(y(index));
|
||||
else
|
||||
yw = window.*detrend(y(index),0);
|
||||
end
|
||||
Yy = fft(yw,nfft);
|
||||
Yy2 = abs(Yy).^2;
|
||||
Pyy = Pyy + Yy2;
|
||||
Pyy2 = Pyy2 + abs(Yy2).^2;
|
||||
for l=1:ns
|
||||
if strcmp(dflag,'linear')
|
||||
xw = window.*detrend(x(index,l));
|
||||
elseif strcmp(dflag,'none')
|
||||
xw = window.*(x(index,l));
|
||||
else
|
||||
xw = window.*detrend(x(index,l),0);
|
||||
end
|
||||
Xx = fft(xw,nfft);
|
||||
Xx2 = abs(Xx).^2;
|
||||
Pxx(:,l) = Pxx(:,l) + Xx2;
|
||||
Pxx2(:,l) = Pxx2(:,l) + abs(Xx2).^2;
|
||||
Xy = Yy .* conj(Xx);
|
||||
Pxy(:,l) = Pxy(:,l) + Xy;
|
||||
Pxy2(:,l) = Pxy2(:,l) + Xy .* conj(Xy);
|
||||
end
|
||||
index = index + (nwind - noverlap);
|
||||
end
|
||||
% Select first half
|
||||
if ~any(any(imag([x y])~=0)), % if x and y are not complex
|
||||
if rem(nfft,2), % nfft odd
|
||||
select = [1:(nfft+1)/2];
|
||||
else
|
||||
select = [1:nfft/2+1]; % include DC AND Nyquist
|
||||
end
|
||||
else
|
||||
select = 1:nfft;
|
||||
end
|
||||
Pxx = Pxx(select,:);
|
||||
Pxy = Pxy(select,:);
|
||||
Pxx2 = Pxx2(select,:);
|
||||
Pxy2 = Pxy2(select,:);
|
||||
Pyy = Pyy(select);
|
||||
Pyy2 = Pyy2(select);
|
||||
cPxx = zeros(size(Pxx));
|
||||
cPyy = zeros(size(Pyy));
|
||||
cPxy = cPxx;
|
||||
if k > 1
|
||||
c = max((k.*Pxx2-abs(Pxx).^2)./(k-1),zeros(size(Pxx)));
|
||||
cPxx = sqrt(c);
|
||||
c = max((k.*Pyy2-abs(Pyy).^2)./(k-1),zeros(size(Pyy)));
|
||||
cPyy = sqrt(c);
|
||||
c = max((k.*Pxy2-abs(Pxy).^2)./(k-1),zeros(size(Pxx)));
|
||||
cPxy = sqrt(c);
|
||||
end
|
||||
Txy = Pxy./Pxx;
|
||||
Cxy = (abs(Pxy).^2)./(Pxx.*repmat(Pyy,1,size(Pxx,2)));
|
||||
ff = sqrt(2)*erfinv(p); % Equal-tails.
|
||||
Pxx = Pxx/KMU;
|
||||
Pyy = Pyy/KMU;
|
||||
Pxy = Pxy/KMU;
|
||||
Pxxc = ff.*cPxx/KMU;
|
||||
Pxyc = ff.*cPxy/KMU;
|
||||
Pyyc = ff.*cPyy/KMU;
|
||||
P = [Pxx Pyy Pxy Txy Cxy];
|
||||
Pc = [Pxxc Pyyc Pxyc];
|
||||
end
|
||||
freq_vector = (select - 1)'*Fs/nfft;
|
||||
|
||||
if nargout == 0, % do plots
|
||||
newplot;
|
||||
if Fs==2, xl='Frequency'; else, xl = 'f [Hz]'; end
|
||||
nplot=1+(1-isempty(y))*4;
|
||||
|
||||
subplot(nplot,1,1);
|
||||
c = [max(Pxx-Pxxc,0) Pxx+Pxxc];
|
||||
c = c.*(c>0);
|
||||
|
||||
h=semilogy(freq_vector,Pxx,...
|
||||
freq_vector,c(:,1:size(c,2)/2),'--',...
|
||||
freq_vector,c(:,size(c,2)/2+1:end),'--');
|
||||
title('\bf X Power Spectral Density')
|
||||
ylabel('P_x')
|
||||
xlabel(xl)
|
||||
if length(h)>3
|
||||
s={};
|
||||
for k=1:length(h)/3
|
||||
c=get(h(k),'Color');
|
||||
set(h(k+length(h)/3),'Color',c);
|
||||
set(h(k+2*length(h)/3),'Color',c);
|
||||
s{k}=['x_' num2str(k)];
|
||||
end
|
||||
legend(h(1:length(h)/3),s);
|
||||
end
|
||||
if (isempty(y)), % single sequence case
|
||||
return
|
||||
end
|
||||
|
||||
subplot(nplot,1,2);
|
||||
c = [max(Pyy-Pyyc,0) Pyy+Pyyc];
|
||||
c = c.*(c>0);
|
||||
h=semilogy(freq_vector,Pyy,...
|
||||
freq_vector,c(:,1),'--',...
|
||||
freq_vector,c(:,2),'--');
|
||||
if size(Pxx,2)>1
|
||||
for k=1:length(h)/3
|
||||
c=get(h(k),'Color');
|
||||
set(h(k+length(h)/3),'Color',c);
|
||||
set(h(k+2*length(h)/3),'Color',c);
|
||||
end
|
||||
end
|
||||
|
||||
title('\bf Y Power Spectral Density')
|
||||
ylabel('P_y')
|
||||
xlabel(xl)
|
||||
|
||||
subplot(nplot,1,3);
|
||||
semilogy(freq_vector,abs(Txy));
|
||||
title('\bf Transfer function magnitude')
|
||||
ylabel('T_{xy}^{(m)}')
|
||||
xlabel(xl)
|
||||
|
||||
subplot(nplot,1,4);
|
||||
plot(freq_vector,(angle(Txy))), ...
|
||||
title('\bf Transfer function phase')
|
||||
ylabel('T_{xy}^{(p)}')
|
||||
xlabel(xl)
|
||||
|
||||
subplot(nplot,1,5);
|
||||
plot(freq_vector,Cxy);
|
||||
title('\bf Coherence')
|
||||
ylabel('C_{xy}')
|
||||
xlabel(xl)
|
||||
if exist ('niceaxes') ~= 0
|
||||
niceaxes(findall(gcf,'Type','axes'));
|
||||
end
|
||||
elseif nargout ==1,
|
||||
Spec = P;
|
||||
elseif nargout ==2,
|
||||
Spec = P;
|
||||
f = freq_vector;
|
||||
elseif nargout ==3,
|
||||
Spec = P;
|
||||
f = freq_vector;
|
||||
SpecConf = Pc;
|
||||
end
|
||||
|
||||
function [msg,x,y,nfft,noverlap,window,Fs,p,dflag] = specchk2(P)
|
||||
%SPECCHK Helper function for SPECTRUM
|
||||
% SPECCHK(P) takes the cell array P and uses each cell as
|
||||
% an input argument. Assumes P has between 1 and 7 elements.
|
||||
|
||||
msg = [];
|
||||
if size(P{1},1)<=1
|
||||
if max(size(P{1}))==1
|
||||
msg = 'Input data must be a vector, not a scalar.';
|
||||
else
|
||||
msg = 'Requires column vector input.';
|
||||
end
|
||||
x=[];
|
||||
y=[];
|
||||
elseif (length(P)>1),
|
||||
if (all(size(P{1},1)==size(P{2})) & (size(P{1},1)>1) ) | ...
|
||||
size(P{2},1)>1, % 0ne signal or 2 present?
|
||||
% two signals, x and y, present
|
||||
x = P{1}; y = P{2};
|
||||
% shift parameters one left
|
||||
P(1) = [];
|
||||
else
|
||||
% only one signal, x, present
|
||||
x = P{1}; y = [];
|
||||
end
|
||||
else % length(P) == 1
|
||||
% only one signal, x, present
|
||||
x = P{1}; y = [];
|
||||
end
|
||||
|
||||
% now x and y are defined; let's get the rest
|
||||
|
||||
if length(P) == 1
|
||||
nfft = min(size(x,1),256);
|
||||
window = hanning(nfft);
|
||||
noverlap = 0;
|
||||
Fs = 2;
|
||||
p = [];
|
||||
dflag = 'linear';
|
||||
elseif length(P) == 2
|
||||
if isempty(P{2}), dflag = 'linear'; nfft = min(size(x,1),256);
|
||||
elseif isstr(P{2}), dflag = P{2}; nfft = min(size(x,1),256);
|
||||
else dflag = 'linear'; nfft = P{2}; end
|
||||
window = hanning(nfft);
|
||||
noverlap = 0;
|
||||
Fs = 2;
|
||||
p = [];
|
||||
elseif length(P) == 3
|
||||
if isempty(P{2}), nfft = min(size(x,1),256); else nfft=P{2}; end
|
||||
if isempty(P{3}), dflag = 'linear'; noverlap = 0;
|
||||
elseif isstr(P{3}), dflag = P{3}; noverlap = 0;
|
||||
else dflag = 'linear'; noverlap = P{3}; end
|
||||
window = hanning(nfft);
|
||||
Fs = 2;
|
||||
p = [];
|
||||
elseif length(P) == 4
|
||||
if isempty(P{2}), nfft = min(size(x,1),256); else nfft=P{2}; end
|
||||
if isstr(P{4})
|
||||
dflag = P{4};
|
||||
window = hanning(nfft);
|
||||
else
|
||||
dflag = 'linear';
|
||||
window = P{4}; window = window(:); % force window to be a column
|
||||
if length(window) == 1, window = hanning(window); end
|
||||
if isempty(window), window = hanning(nfft); end
|
||||
end
|
||||
if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end
|
||||
Fs = 2;
|
||||
p = [];
|
||||
elseif length(P) == 5
|
||||
if isempty(P{2}), nfft = min(size(x,1),256); else nfft=P{2}; end
|
||||
window = P{4}; window = window(:); % force window to be a column
|
||||
if length(window) == 1, window = hanning(window); end
|
||||
if isempty(window), window = hanning(nfft); end
|
||||
if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end
|
||||
if isstr(P{5})
|
||||
dflag = P{5};
|
||||
Fs = 2;
|
||||
else
|
||||
dflag = 'linear';
|
||||
if isempty(P{5}), Fs = 2; else Fs = P{5}; end
|
||||
end
|
||||
p = [];
|
||||
elseif length(P) == 6
|
||||
if isempty(P{2}), nfft = min(size(x,1),256); else nfft=P{2}; end
|
||||
window = P{4}; window = window(:); % force window to be a column
|
||||
if length(window) == 1, window = hanning(window); end
|
||||
if isempty(window), window = hanning(nfft); end
|
||||
if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end
|
||||
if isempty(P{5}), Fs = 2; else Fs = P{5}; end
|
||||
if isstr(P{6})
|
||||
dflag = P{6};
|
||||
p = [];
|
||||
else
|
||||
dflag = 'linear';
|
||||
if isempty(P{6}), p = .95; else p = P{6}; end
|
||||
end
|
||||
elseif length(P) == 7
|
||||
if isempty(P{2}), nfft = min(size(x,1),256); else nfft=P{2}; end
|
||||
window = P{4}; window = window(:); % force window to be a column
|
||||
if length(window) == 1, window = hanning(window); end
|
||||
if isempty(window), window = hanning(nfft); end
|
||||
if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end
|
||||
if isempty(P{5}), Fs = 2; else Fs = P{5}; end
|
||||
if isempty(P{6}), p = .95; else p = P{6}; end
|
||||
if isstr(P{7})
|
||||
dflag = P{7};
|
||||
else
|
||||
msg = 'DFLAG parameter must be a string.'; return
|
||||
end
|
||||
end
|
||||
|
||||
% NOW do error checking
|
||||
if isempty(msg)
|
||||
if (nfft<length(window)),
|
||||
msg = 'Requires window''s length to be no greater than the FFT length.';
|
||||
end
|
||||
if (noverlap >= length(window)),
|
||||
msg = 'Requires NOVERLAP to be strictly less than the window length.';
|
||||
end
|
||||
if (nfft ~= abs(round(nfft)))|(noverlap ~= abs(round(noverlap))),
|
||||
msg = 'Requires positive integer values for NFFT and NOVERLAP.';
|
||||
end
|
||||
if ~isempty(p),
|
||||
if (prod(size(p))>1)|(p(1,1)>1)|(p(1,1)<0),
|
||||
msg = 'Requires confidence parameter to be a scalar between 0 and 1.';
|
||||
end
|
||||
end
|
||||
if (min(size(y))~=1)&(~isempty(y)),
|
||||
msg = 'Requires column vector input as second signal.';
|
||||
end
|
||||
if (size(x,1)~=length(y))&(~isempty(y)),
|
||||
msg = 'Requires X and Y to have the same number of rows.';
|
||||
end
|
||||
end
|
BIN
struct2csv - Snelkoppeling.lnk
Normal file
BIN
struct2csv - Snelkoppeling.lnk
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user