function [ResultStruct] = GaitOutcomesTrunkAccFuncIH(inputData,FS,LegLength,WindowLen,ApplyRealignment,ApplyRemoveSteps) % DESCRIPTON: Trunk analysis of Iphone data without the need for step detection % CL Nov 2019 % Adapted IH feb-april 2020 % koloms data of smartphone % 1st column is time data; % 2nd column is X, medio-lateral: + left, - right % 3rd column is Y, vertical: + downwards, - upwards % 4th column is Z, anterior- posterior : + forwards, - backwards %% Input Trunk accelerations during locomotion in VT, ML, AP direction % InputData: Acceleration signal with time and accelerations in VT,ML and % AP direction. % FS: sample frequency of the Accdata % LegLength: length of the leg of the participant in m; %% Output % ResultStruct: structure coninting all outcome measured calculated % Spectral parameters, spatiotemporal gait parameters, non-linear % parameters % fields and subfields: include the multiple measurements of a subject %% Literature % Richman & Moorman, 2000; [ sample entropy] % Bisi & Stagni Gait & Posture 2016, 47 (6) 37-42 % Kavagnah et al., Eur J Appl Physiol 2005 94: 468?475; Human Movement Science 24(2005) 574?587 [ synchrony] % Moe-Nilsen J Biomech 2004 37, 121-126 [ autorcorrelation step regularity and symmetry % Kobsar et al. Gait & Posture 2014 39, 553?557 [ synchrony ] % Rispen et al; Gait & Posture 2014, 40, 187 - 192 [realignment axes] % Zijlstra & HofGait & Posture 2003 18,2, 1-10 [spatiotemporal gait variables] % Lamoth et al, 2002 [index of harmonicity] % Costa et al. 2003 Physica A 330 (2003) 53–60 [ multiscale entropy] % Cignetti F, Decker LM, Stergiou N. Ann Biomed Eng. 2012 % May;40(5):1122-30. doi: 10.1007/s10439-011-0474-3. Epub 2011 Nov 25. [ % Wofl vs. Rosenstein Lyapunov] %% Settings Gr = 9.81; % Gravity acceleration, multiplication factor for accelerations StrideFreqEstimate = 1.00; % Used to set search for stride frequency from 0.5*StrideFreqEstimate until 2*StrideFreqEstimate StrideTimeRange = [0.2 4.0]; % Range to search for stride time (seconds) IgnoreMinMaxStrides = 0.10; % Number or percentage of highest&lowest values ignored for improved variability estimation N_Harm = 12; % Number of harmonics used for harmonic ratio, index of harmonicity and phase fluctuation LowFrequentPowerThresholds = ... [0.7 1.4]; % Threshold frequencies for estimation of low-frequent power percentages Lyap_m = 7; % Embedding dimension (used in Lyapunov estimations) Lyap_FitWinLen = round(60/100*FS); % Fitting window length (used in Lyapunov estimations Rosenstein's method) Sen_m = 5; % Dimension, the length of the subseries to be matched (used in sample entropy estimation) Sen_r = 0.3; % Tolerance, the maximum distance between two samples to qualify as match, relative to std of DataIn (used in sample entropy estimation) NStartEnd = [100]; M = 5; % maximum template length ResultStruct = struct(); %% Filter and Realign Accdata % Apply Realignment & Filter data if ApplyRealignment % apply relignment as described in Rispens S, Pijnappels M, van Schooten K, Beek PJ, Daffertshofer A, van Die?n JH (2014). data = inputData(:, [3,2,4]); % reorder data to 1 = V; 2= ML, 3 = AP% % Consistency of gait characteristics as determined from acceleration data collected at different trunk locations. Gait Posture 2014;40(1):187-92. [RealignedAcc, ~] = RealignSensorSignalHRAmp(data, FS); dataAcc = RealignedAcc; [B,A] = butter(2,20/(FS/2),'low'); dataAcc_filt = filtfilt(B,A,dataAcc); else % we asume tat data is already reorderd to 1 = V; 2= ML, 3 = AP in an earlier stage; [B,A] = butter(2,20/(FS/2),'low'); dataAcc = inputData; dataAcc_filt = filtfilt(B,A,dataAcc); end %% Step dectection % Determines the number of steps in the signal so that the first 30 and last 30 steps in the signal can be removed if ApplyRemoveSteps % In order to run the step detection script we first need to run an autocorrelation function; [ResultStruct] = AutocorrStrides(dataAcc_filt,FS, StrideTimeRange,ResultStruct); % StrideTimeSamples is needed as an input for the stepcountFunc; StrideTimeSamples = ResultStruct.StrideTimeSamples; % Calculate the number of steps; [PksAndLocsCorrected] = StepcountFunc(dataAcc_filt,StrideTimeSamples,FS); % This function selects steps based on negative and positive values. % However to determine the steps correctly we only need one of these; LocsSteps = PksAndLocsCorrected(1:2:end,2); %% Cut data & remove currents results % Remove 20 steps in the beginning and end of data dataAccCut = dataAcc(LocsSteps(31):LocsSteps(end-30),:); dataAccCut_filt = dataAcc_filt(LocsSteps(31):LocsSteps(end-30),:); % Clear currently saved results from Autocorrelation Analysis clear ResultStruct; clear PksAndLocsCorrected; clear LocsSteps; else; dataAccCut = dataAcc; dataAccCut_filt = dataAcc_filt; end %% Calculate stride parameters ResultStruct = struct; % create empty struct % Run function AutoCorrStrides, Outcomeparameters: StrideRegularity,RelativeStrideVariability,StrideTimeSamples,StrideTime [ResultStruct] = AutocorrStrides(dataAccCut_filt,FS, StrideTimeRange,ResultStruct); StrideTimeSamples = ResultStruct.StrideTimeSamples; % needed as input for other functions % Calculate Step symmetry --> method 1 ij = 1; dirSymm = [1,3]; % Gait Synmmetry is only informative in AP/V direction: See Tura A, Raggi M, Rocchi L, Cutti AG, Chiari L: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. J Neuroeng Rehabil 2010, 7:4. for jk=1:length(dirSymm) [C, lags] = AutocorrRegSymmSteps(dataAccCut_filt(:,dirSymm(jk))); [Ad,p] = findpeaks(C,'MinPeakProminence',0.2, 'MinPeakHeight', 0.2); if size(Ad,1) > 1 Ad1 = Ad(1); Ad2 = Ad(2); GaitSymm(:,ij) = abs((Ad1-Ad2)/mean([Ad1+Ad2]))*100; else GaitSymm(:,ij) = NaN; end ij = ij +1; end % Save outcome in struct; ResultStruct.GaitSymm_V = GaitSymm(1); ResultStruct.GaitSymm_AP = GaitSymm(2); % Calculate Step symmetry --> method 2 [PksAndLocsCorrected] = StepcountFunc(dataAccCut_filt,StrideTimeSamples,FS); LocsSteps = PksAndLocsCorrected(2:2:end,2); if rem(size(LocsSteps,1),2) == 0; % is number of steps is even LocsSteps2 = LocsSteps(1:2:end); else LocsSteps2 = LocsSteps(3:2:end); end LocsSteps1 = LocsSteps(2:2:end); DiffLocs2 = diff(LocsSteps2); DiffLocs1 = diff(LocsSteps1); StepTime2 = DiffLocs2(1:end-1)/FS; % leave last one out because it is higher StepTime1 = DiffLocs1(1:end-1)/FS; SI = abs((2*(StepTime2-StepTime1))./(StepTime2+StepTime1))*100; ResultStruct.GaitSymmIndex = nanmean(SI); %% Calculate spatiotemporal stride parameters % Measures from height variation by double integration of VT accelerations and high-pass filtering [ResultStruct] = SpatioTemporalGaitParameters(dataAccCut_filt,StrideTimeSamples,ApplyRealignment,LegLength,FS,IgnoreMinMaxStrides,ResultStruct); %% Measures derived from spectral analysis AccVectorLen = sqrt(sum(dataAccCut_filt(:,1:3).^2,2)); [ResultStruct] = SpectralAnalysisGaitfunc(dataAccCut_filt,WindowLen,FS,N_Harm,LowFrequentPowerThresholds,AccVectorLen,ResultStruct); %% Calculation non-linear parameters; % cut into windows of size WindowLen N_Windows = floor(size(dataAccCut,1)/WindowLen); N_SkipBegin = ceil((size(dataAccCut,1)-N_Windows*WindowLen)/2); LyapunovWolf = nan(N_Windows,3); LyapunovRosen = nan(N_Windows,3); SE= nan(N_Windows,3); for WinNr = 1:N_Windows; AccWin = dataAccCut(N_SkipBegin+(WinNr-1)*WindowLen+(1:WindowLen),:); for j=1:3 [LyapunovWolf(WinNr,j),~] = CalcMaxLyapWolfFixedEvolv(AccWin(:,j),FS,struct('m',Lyap_m)); [LyapunovRosen(WinNr,j),outpo] = CalcMaxLyapConvGait(AccWin(:,j),FS,struct('m',Lyap_m,'FitWinLen',Lyap_FitWinLen)); [SE(WinNr,j)] = funcSampleEntropy(AccWin(:,j), Sen_m, Sen_r); % no correction for FS; SE does increase with higher FS but effect is considered negligible as range is small (98-104HZ). Might consider updating r to account for larger ranges. end end LyapunovWolf = nanmean(LyapunovWolf,1); LyapunovRosen = nanmean(LyapunovRosen,1); SampleEntropy = nanmean(SE,1); ResultStruct.LyapunovWolf_V = LyapunovWolf(1); ResultStruct.LyapunovWolf_ML = LyapunovWolf(2); ResultStruct.LyapunovWolf_AP = LyapunovWolf(3); ResultStruct.LyapunovRosen_V = LyapunovRosen(1); ResultStruct.LyapunovRosen_ML = LyapunovRosen(2); ResultStruct.LyapunovRosen_AP = LyapunovRosen(3); ResultStruct.SampleEntropy_V = SampleEntropy(1); ResultStruct.SampleEntropy_ML = SampleEntropy(2); ResultStruct.SampleEntropy_AP = SampleEntropy(3); if isfield(ResultStruct,'StrideFrequency') LyapunovPerStrideWolf = LyapunovWolf/ResultStruct.StrideFrequency; LyapunovPerStrideRosen = LyapunovRosen/ResultStruct.StrideFrequency; end ResultStruct.LyapunovPerStrideWolf_V = LyapunovPerStrideWolf(1); ResultStruct.LyapunovPerStrideWolf_ML = LyapunovPerStrideWolf(2); ResultStruct.LyapunovPerStrideWolf_AP = LyapunovPerStrideWolf(3); ResultStruct.LyapunovPerStrideRosen_V = LyapunovPerStrideRosen(1); ResultStruct.LyapunovPerStrideRosen_ML = LyapunovPerStrideRosen(2); ResultStruct.LyapunovPerStrideRosen_AP = LyapunovPerStrideRosen(3); end