1709 lines
928 KiB
HTML
1709 lines
928 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2020b"><title>Gait Variability Analysis CLBP</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left; }
|
||
.S1 { margin-bottom: 20px; padding-bottom: 4px; }
|
||
.S2 { margin: 0px; padding: 10px 0px 10px 5px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 700; text-align: start; }
|
||
.S3 { margin: -1px 0px 0px; padding: 10px 0px 10px 7px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: start; }
|
||
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
|
||
.S4 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
|
||
.S5 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
|
||
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
|
||
.S7 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left; }
|
||
.S8 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left; }
|
||
.S9 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
|
||
.S10 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
|
||
.variableValue { width: 100% !important; }
|
||
.embeddedOutputsMatrixElement,.eoOutputWrapper .matrixElement {min-height: 18px; box-sizing: border-box;}
|
||
.embeddedOutputsMatrixElement .matrixElement,.eoOutputWrapper .matrixElement,.rtcDataTipElement .matrixElement {position: relative;}
|
||
.matrixElement .variableValue,.rtcDataTipElement .matrixElement .variableValue {white-space: pre; display: inline-block; vertical-align: top; overflow: hidden;}
|
||
.embeddedOutputsMatrixElement.inlineElement {}
|
||
.embeddedOutputsMatrixElement.inlineElement .topHeaderWrapper {display: none;}
|
||
.embeddedOutputsMatrixElement.inlineElement .veTable .body {padding-top: 0 !important; max-height: 100px;}
|
||
.inlineElement .matrixElement {max-height: 300px;}
|
||
.embeddedOutputsMatrixElement.rightPaneElement {}
|
||
.rightPaneElement .matrixElement,.rtcDataTipElement .matrixElement {overflow: hidden; padding-left: 9px;}
|
||
.rightPaneElement .matrixElement {margin-bottom: -1px;}
|
||
.embeddedOutputsMatrixElement .matrixElement .valueContainer,.eoOutputWrapper .matrixElement .valueContainer,.rtcDataTipElement .matrixElement .valueContainer {white-space: nowrap; margin-bottom: 3px;}
|
||
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis.hide,.embeddedOutputsMatrixElement .matrixElement .verticalEllipsis.hide,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis.hide,.eoOutputWrapper .matrixElement .verticalEllipsis.hide,.rtcDataTipElement .matrixElement .valueContainer .horizontalEllipsis.hide,.rtcDataTipElement .matrixElement .verticalEllipsis.hide {display: none;}
|
||
.embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .verticalEllipsis, .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .horizontalEllipsis {display:none;}
|
||
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis {margin-bottom: -3px;}
|
||
.eoOutputWrapper .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer {cursor: default !important;}
|
||
.embeddedOutputsVariableElement {white-space: pre-wrap; word-wrap: break-word; min-height: 18px; max-height: 250px; overflow: auto;}
|
||
.variableElement {}
|
||
.embeddedOutputsVariableElement.inlineElement {}
|
||
.inlineElement .variableElement {}
|
||
.embeddedOutputsVariableElement.rightPaneElement {min-height: 16px;}
|
||
.rightPaneElement .variableElement {padding-top: 2px; padding-left: 9px;}
|
||
.variableNameElement {margin-bottom: 3px; display: inline-block;}
|
||
.matrixElement .horizontalEllipsis,.rtcDataTipElement .matrixElement .horizontalEllipsis {display: inline-block; margin-top: 3px; width: 30px; height: 12px; background-repeat: no-repeat; background-image: url("");}
|
||
.matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis {margin-left: 35px; width: 12px; height: 30px; background-repeat: no-repeat; background-image: url("");}
|
||
.S11 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
|
||
.S12 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
|
||
.S13 { margin: 20px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left; }
|
||
.embeddedOutputsErrorElement {min-height: 18px; max-height: 250px; overflow: auto;}
|
||
.embeddedOutputsErrorElement.inlineElement {}
|
||
.embeddedOutputsErrorElement.rightPaneElement {}
|
||
.embeddedOutputsWarningElement{min-height: 18px; max-height: 250px; overflow: auto;}
|
||
.embeddedOutputsWarningElement.inlineElement {}
|
||
.embeddedOutputsWarningElement.rightPaneElement {}
|
||
.diagnosticMessage-wrapper {font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px;}
|
||
.diagnosticMessage-wrapper.diagnosticMessage-warningType {color: rgb(255,100,0);}
|
||
.diagnosticMessage-wrapper.diagnosticMessage-warningType a {color: rgb(255,100,0); text-decoration: underline;}
|
||
.diagnosticMessage-wrapper.diagnosticMessage-errorType {color: rgb(230,0,0);}
|
||
.diagnosticMessage-wrapper.diagnosticMessage-errorType a {color: rgb(230,0,0); text-decoration: underline;}
|
||
.diagnosticMessage-wrapper .diagnosticMessage-messagePart,.diagnosticMessage-wrapper .diagnosticMessage-causePart {white-space: pre-wrap;}
|
||
.diagnosticMessage-wrapper .diagnosticMessage-stackPart {white-space: pre;}
|
||
.embeddedOutputsTextElement,.embeddedOutputsVariableStringElement {white-space: pre; word-wrap: initial; min-height: 18px; max-height: 250px; overflow: auto;}
|
||
.textElement,.rtcDataTipElement .textElement {padding-top: 3px;}
|
||
.embeddedOutputsTextElement.inlineElement,.embeddedOutputsVariableStringElement.inlineElement {}
|
||
.inlineElement .textElement {}
|
||
.embeddedOutputsTextElement.rightPaneElement,.embeddedOutputsVariableStringElement.rightPaneElement {min-height: 16px;}
|
||
.rightPaneElement .textElement {padding-top: 2px; padding-left: 9px;}
|
||
.S14 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left; }
|
||
.S15 { margin: 10px 0px 20px; padding-left: 0px; font-family: Helvetica, Arial, sans-serif; font-size: 14px; }
|
||
.S16 { margin-left: 56px; line-height: 21px; min-height: 0px; text-align: left; white-space: pre-wrap; }
|
||
.S17 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left; }
|
||
.S18 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }</style></head><body><div class = rtcContent><h1 class = 'S0' id = 'T_D37184EE' ><span>Gait Variability Analysis CLBP</span></h1><div class = 'S1'><div class = 'S2'><span style=' font-weight: bold;'>Table of Contents</span></div><div class = 'S3'><a href = "#H_7D86BAF1"><span>Clear and close;
|
||
</span></a><a href = "#H_82614DF8"><span>Load data;
|
||
</span></a><a href = "#H_04FF0795"><span>Settings;
|
||
</span></a><a href = "#H_A9CB60AB"><span>Plot the data;
|
||
</span></a><a href = "#H_CA962223"><span>Calculate parameters;
|
||
</span></a><span> </span><a href = "#H_2EA43FAC"><span>Index of harmonicity (Lamoth et al. 2002)
|
||
</span></a><span> </span><a href = "#H_3E396779"><span>Lyapunov exponents (Wolfs vs. Rosenstein)
|
||
</span></a><a href = "#H_9FD2A70A"><span>Visualize step detection;</span></a></div></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Gait Variability Analysis </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Script created for MAP 2020-2021</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% adapted from Claudine Lamoth and Iris Hagoort</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% version1 October 2020</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Input: needs mat file which contains all raw accelerometer data</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Input: needs excel file containing the participant information including</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% leg length.</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S6'></div></div></div><h2 class = 'S7' id = 'H_7D86BAF1' ><span>Clear and close;</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span>clear;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>close </span><span style="color: rgb(170, 4, 249);">all</span><span>;</span></span></div></div></div><h2 class = 'S7' id = 'H_82614DF8' ><span>Load data;</span></h2><div class = 'S8'><span>Select 1 trial. </span><span style=' font-weight: bold;'>For loop to import all data will be used at a later stage</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span>[FNaam,FilePad] = uigetfile(</span><span style="color: rgb(170, 4, 249);">'*.xls'</span><span>,</span><span style="color: rgb(170, 4, 249);">'Load phyphox data...'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>filename =[FilePad FNaam];</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S9'><span style="white-space: pre;"><span>PhyphoxData = xlsread(filename)</span></span></div><div class = 'S10'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="30B7F20C" data-testid="output_0" data-width="859" style="width: 889px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 859px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">PhyphoxData = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">24092×4</span></div></div><div class="valueContainer" data-layout="{"columnWidth":66,"totalColumns":4,"totalRows":24092,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 266px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 0 0.4018 -8.5041 4.8779
|
||
0.0100 0.3962 -8.4703 4.7944
|
||
0.0199 0.4335 -8.4378 4.7159
|
||
0.0299 0.5209 -8.3889 4.6266
|
||
0.0399 0.6495 -8.3796 4.5437
|
||
0.0498 0.7528 -8.3817 4.4288
|
||
0.0598 0.8820 -8.3622 4.3134
|
||
0.0697 0.9841 -8.4321 4.2221
|
||
0.0797 1.1041 -8.5237 4.1916
|
||
0.0897 1.1959 -8.5418 4.1310
|
||
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S11'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%load('Phyphoxdata.mat'); % loads accelerometer data, is stored in struct with name AccData</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%load('ExcelInfo.mat');</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%Participants = fields(AccData);</span></span></div></div></div><h2 class = 'S7' id = 'H_04FF0795' ><span>Settings;</span></h2><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S12'><span style="white-space: pre;"><span>LegLength = </span></span><span>98</span><span style="white-space: pre;"><span> </span><span style="color: rgb(2, 128, 9);">% LegLength info not available!</span></span></div><div class = 'S10'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>LegLength = 98</div></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%LegLengths = excel.data.GeneralInformation(:,5); % leglength info is in 5th column</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>LegLengthsM = LegLength/100; </span><span style="color: rgb(2, 128, 9);">% convert to m</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>t1 = length(PhyphoxData(:,1)); </span><span style="color: rgb(2, 128, 9);">% Number of Samples</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>FS = 100; </span><span style="color: rgb(2, 128, 9);">% sample frequency</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>Time_ms = PhyphoxData(:,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>accX = PhyphoxData(:,2);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>accY = PhyphoxData(:,3);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>accZ = PhyphoxData(:,4);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>AccData = (PhyphoxData(:,[1 2 3 4])); </span><span style="color: rgb(2, 128, 9);">% matrix with accelerometer data</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>Start = 1; </span><span style="color: rgb(2, 128, 9);">% Start time (s) for plot</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>End = 60; </span><span style="color: rgb(2, 128, 9);">% End time (s) for plot</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>T1 = Start*FS; </span><span style="color: rgb(2, 128, 9);">% Start time calculated from Hz</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>T2 = End*FS; </span><span style="color: rgb(2, 128, 9);">% End time calculated from Hz</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>c = (Start:(1/FS):End)'; </span><span style="color: rgb(2, 128, 9);">% Time STEPSIZE = 1/100</span></span></div></div></div><h2 class = 'S7' id = 'H_A9CB60AB' ><span>Plot the data;</span></h2><div class = 'S8'><span style=' font-weight: bold;'>(1) first step in notebook</span></div><div class = 'S8'><span>1st column is time data (ms)</span></div><div class = 'S8'><span>2nd column is X, medio-lateral: + left, - right</span></div><div class = 'S8'><span>3rd column is Y, vertical: + downwards, - upwards</span></div><div class = 'S8'><span>4th column is Z, anterior- posterior : + forwards, - backwards</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span>AccX = accX(T1:T2); </span><span style="color: rgb(2, 128, 9);">% Signal over timeframe</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>AccY = accY(T1:T2); </span><span style="color: rgb(2, 128, 9);">% Signal over timeframe</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>AccZ = accZ(T1:T2); </span><span style="color: rgb(2, 128, 9);">% Signal over timeframe</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>figure(1);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>plot(c,AccX,c,AccY,c,AccZ); </span><span style="color: rgb(2, 128, 9);">% Plot signal over timeframe</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'acc signal not filtered - First Minute'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>xlabel(</span><span style="color: rgb(170, 4, 249);">'Time (s)'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>ylabel(</span><span style="color: rgb(170, 4, 249);">'acceleration (g)'</span><span>);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S9'><span style="white-space: pre;"><span>legend(</span><span style="color: rgb(170, 4, 249);">'X - ML'</span><span>,</span><span style="color: rgb(170, 4, 249);">'Y - Vertical'</span><span>,</span><span style="color: rgb(170, 4, 249);">'Z - AP'</span><span>)</span></span></div><div class = 'S10'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="CBEE167A" data-testid="output_2" style="width: 889px;"><div class="figureElement" style="cursor: default;"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_164_3" widgetid="uniqName_164_3" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_164_5" widgetid="uniqName_164_5" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div></div><h2 class = 'S13' id = 'H_77261343' ><img class = "imageNode" src = "" width = "373" height = "195" alt = "" style = "vertical-align: baseline"></img></h2><h2 class = 'S13' id = 'H_4A6AF4FC' ><span></span></h2><h2 class = 'S13' id = 'H_CA962223' ><span>Calculate parameters;</span></h2><div class = 'S8'><span>calculate only for the first participant;</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span>inputData = AccData;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>WindowLength = FS*10; </span><span style="color: rgb(2, 128, 9);">% why FS*10? </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>ApplyRealignment = true; </span><span style="color: rgb(2, 128, 9);">% reorder data to 1 = V; 2= ML, 3 = AP</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>ApplyRemoveSteps = false; </span><span style="color: rgb(2, 128, 9);">% if true - removes first 30 and last 30 steps</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S9'><span style="white-space: pre;"><span>[</span><span class="warning_squiggle_rte857602304">ResultStruct</span><span>] = GaitOutcomesTrunkAccFuncIH(inputData,FS,LegLength,WindowLength,ApplyRealignment,ApplyRemoveSteps)</span></span></div><div class = 'S10'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="3B28D337" data-testid="output_3" data-width="859" data-height="734" data-hashorizontaloverflow="false" data-scroll-top="473" data-scroll-left="0" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.3908
|
||
StrideRegularity_ML: 0.4191
|
||
StrideRegularity_AP: 0.1101
|
||
StrideRegularity_All: 0.3529
|
||
RelativeStrideVariability_V: 0.6092
|
||
RelativeStrideVariability_ML: 0.5809
|
||
RelativeStrideVariability_AP: 0.8899
|
||
RelativeStrideVariability_All: 0.6471
|
||
StrideTimeSamples: 132
|
||
StrideTimeSeconds: 1.3200
|
||
GaitSymm_V: 16.8830
|
||
GaitSymm_AP: NaN
|
||
GaitSymmIndex: 2.8065
|
||
StepLengthMean: 11.5894
|
||
Distance: 1.8825e+03
|
||
WalkingSpeedMean: 7.8279
|
||
StrideTimeVariability: 0.1931
|
||
StrideSpeedVariability: 1.1210
|
||
StrideLengthVariability: 0.7532
|
||
StrideTimeVariabilityOmitOutlier: 14.7357
|
||
StrideSpeedVariabilityOmitOutlier: 0.8713
|
||
StrideLengthVariabilityOmitOutlier: 0.4511
|
||
IndexHarmonicity_V: 0.6094
|
||
IndexHarmonicity_ML: 0.8041
|
||
IndexHarmonicity_AP: 0.9122
|
||
IndexHarmonicity_All: 0.6742
|
||
HarmonicRatio_V: 2.4928
|
||
HarmonicRatio_ML: 2.8449
|
||
HarmonicRatio_AP: 1.6364
|
||
HarmonicRatioP_V: 9.1114
|
||
HarmonicRatioP_ML: 14.1449
|
||
HarmonicRatioP_AP: 5.6995
|
||
FrequencyVariability_V: 0.5234
|
||
FrequencyVariability_ML: 0.6435
|
||
FrequencyVariability_AP: 0.6281
|
||
StrideFrequency: 0.7367
|
||
LyapunovWolf_V: 1.3653
|
||
LyapunovWolf_ML: 1.1477
|
||
LyapunovWolf_AP: 1.4231
|
||
LyapunovRosen_V: 1.0151
|
||
LyapunovRosen_ML: 0.7871
|
||
LyapunovRosen_AP: 0.9792
|
||
SampleEntropy_V: 0.1999
|
||
SampleEntropy_ML: 0.2537
|
||
SampleEntropy_AP: 0.2710
|
||
LyapunovPerStrideWolf_V: 1.8534
|
||
LyapunovPerStrideWolf_ML: 1.5579
|
||
LyapunovPerStrideWolf_AP: 1.9318
|
||
LyapunovPerStrideRosen_V: 1.3780
|
||
LyapunovPerStrideRosen_ML: 1.0685
|
||
LyapunovPerStrideRosen_AP: 1.3292
|
||
</div></div></div></div></div></div><div class = 'S14'><span style=' font-weight: bold;'>output:</span></div><div class = 'S8'><span>- </span><span style=' text-decoration: underline;'>NaN GaitSymm_V: </span></div><ul class = 'S15'><li class = 'S16'><span>Gait Synmmetry is only informative in AP/V direction: See Tura A, Raggi M, Rocchi L, Cutti AG, Chiari L: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. J Neuroeng Rehabil 2010, 7:4</span></li></ul><div class = 'S8'><span>- SampEn has two advantages over ApEn: data length independence and a relatively trouble-free implementation.</span></div><div class = 'S8'><span>- Some Settings ResulStruct</span></div><div class = 'S8'><span style=' font-weight: bold;'>IgnoreMinMaxStrides = 0.10; </span><span> % Number or percentage of highest&lowest values ignored for improved variability estimation</span></div><div class = 'S8'><span style=' font-weight: bold;'>N_Harm = 12; </span><span> % Number of harmonics used for harmonic ratio, index of harmonicity and phase fluctuation</span></div><div class = 'S8'><span style=' font-weight: bold;'>Lyap_m = 7; </span><span> % Embedding dimension (used in Lyapunov estimations)</span></div><div class = 'S8'><span style=' font-weight: bold;'>Lyap_FitWinLen</span><span> = round(60/100*FS); % Fitting window length (used in Lyapunov estimations Rosenstein's method)</span></div><div class = 'S8'><span style=' font-weight: bold;'>Sen_m = 5;</span><span> % Dimension, the length of the subseries to be matched (used in sample entropy estimation)</span></div><div class = 'S8'><span style=' font-weight: bold;'>Sen_r = 0.3;</span><span> % Tolerance, the maximum distance between two samples to qualify as match, relative to std of DataIn (used in sample entropy estimation)</span></div><h3 class = 'S17' id = 'H_2EA43FAC' ><span>Index of harmonicity (Lamoth et al. 2002)</span></h3><div class = 'S8'><span>by means of a discrete Fourier transform (DFT). The peak power at the first six harmonics was estimated and, subsequently, the index of harmonicity was defined as ; </span><span style=' font-weight: bold;'>FORMULA</span></div><div class = 'S8'><span>where P0 is the power spectral density of the fundamental frequency (first harmonic) and $ Pi the cumulative sum of power spectral density of the fundamental frequency and the first five superharmonics. A power ratio of 1 indicates that the rotation of the pelvis or the thorax is perfectly harmonic. In view of possible drift, which could lead to missing or widening peaks, the power spectral density of each peak was calculated within the frequency bands of +0.1 and −0.1 Hz of the peak frequency value. All power spectral densities were normalized by dividing the power by the sum of the total power spectrum, which equals the variance.</span></div><h3 class = 'S17' id = 'H_3E396779' ><span>Lyapunov exponents (Wolfs vs. Rosenstein)</span></h3><div class = 'S8' id = 'H_B1B85E8D' ><span>The W-algorithm is advocated for use when examining local dynamic stability with small gait data sets.</span></div><h2 class = 'S13' id = 'H_9FD2A70A' ><span>Visualize step detection;</span></h2><div class = 'S8'><span>function [ResultStruct] = GaitVariabilityAnalysisIH_WithoutTurns(inputData,FS,LegLength,ApplyRealignment,ApplyRemoveSteps);</span></div><div class = 'S8'><span style=' font-weight: bold;'>script for analysing straight parts</span></div><div class = 'S8'><span>(1) Realign Data</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%% Realign data</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>data = inputData(:, [3,2,4]); </span><span style="color: rgb(2, 128, 9);">% reorder data to 1 = V; 2= ML, 3 = AP</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%Realign sensor data to VT-ML-AP frame</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">if </span><span>ApplyRealignment </span><span style="color: rgb(2, 128, 9);">% apply relignment as described in Rispens S, Pijnappels M, van Schooten K, Beek PJ, Daffertshofer A, van Die?n JH (2014).</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> </span><span style="color: rgb(2, 128, 9);">% Consistency of gait characteristics as determined from acceleration data collected at different trunk locations. Gait Posture 2014;40(1):187-92.</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> [RealignedAcc, ~] = RealignSensorSignalHRAmp(data, FS);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> dataAcc = RealignedAcc;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div></div><div class = 'S14'><span>(2) Filter Data</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%% Filter data strongly & Determine location of steps</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Filter data</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>[B,A] = butter(2,3/(FS/2),</span><span style="color: rgb(170, 4, 249);">'low'</span><span>); </span><span style="color: rgb(2, 128, 9);">% Filters data very strongly which is needed to determine turns correctly</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>dataStepDetection = filtfilt(B,A,dataAcc);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div></div><div class = 'S14'><span>(3) Determine Location of steps</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Determine steps;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%%%%%%% HIER MISSCHIEN ALTERNATIEF VOOR VAN RISPENS %%%%%%%%%%%%%</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Explanation of method: https://nl.mathworks.com/help/supportpkg/beagleboneblue/ref/counting-steps-using-beagleboneblue-hardware-example.html</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% From website: To convert the XYZ acceleration vectors at each point in time into scalar values,</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% calculate the magnitude of each vector. This way, you can detect large changes in overall acceleration,</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% such as steps taken while walking, regardless of device orientation.</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>magfilt = sqrt(sum((dataStepDetection(:,1).^2) + (dataStepDetection(:,2).^2) + (dataStepDetection(:,3).^2), 2));</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>magNoGfilt = magfilt - mean(magfilt);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>minPeakHeight2 = std(magNoGfilt);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>[pks, locs] = findpeaks(magNoGfilt, </span><span style="color: rgb(170, 4, 249);">'MINPEAKHEIGHT'</span><span>, minPeakHeight2); </span><span style="color: rgb(2, 128, 9);">% for step detection</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>numStepsOption2_filt = numel(pks); </span><span style="color: rgb(2, 128, 9);">% counts number of steps;</span></span></div></div></div><div class = 'S14'><span>(4) Determine location of turns</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%% Determine locations of turns;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>diffLocs = diff(locs); </span><span style="color: rgb(2, 128, 9);">% calculates difference in step location</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>avg_diffLocs = mean(diffLocs); </span><span style="color: rgb(2, 128, 9);">% average distance between steps</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>std_diffLocs = std(diffLocs); </span><span style="color: rgb(2, 128, 9);">% standard deviation of distance between steps</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>figure(2);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>findpeaks(diffLocs, </span><span style="color: rgb(170, 4, 249);">'MINPEAKHEIGHT'</span><span>, avg_diffLocs, </span><span style="color: rgb(170, 4, 249);">'MINPEAKDISTANCE'</span><span>,5); </span><span style="color: rgb(2, 128, 9);">% these values have been chosen based on visual inspection of the signal</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S9'><span style="white-space: pre;"><span>line([1 length(diffLocs)],[avg_diffLocs avg_diffLocs])</span></span></div><div class = 'S10'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="034BC009" data-testid="output_4" style="width: 889px;"><div class="figureElement" style="cursor: default;"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_164_6" widgetid="uniqName_164_6" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_164_8" widgetid="uniqName_164_8" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre;"><span>[pks_diffLocs, locs_diffLocs] = findpeaks(diffLocs, </span><span style="color: rgb(170, 4, 249);">'MINPEAKHEIGHT'</span><span>, avg_diffLocs,</span><span style="color: rgb(170, 4, 249);">'MINPEAKDISTANCE'</span><span>,5);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>locsTurns = [locs(locs_diffLocs), locs(locs_diffLocs+1)];</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div></div><div class = 'S14'><span>(5) Visualize turns</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%% Visualizing turns</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Duplying signal + visualing</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% to make second signal with the locations of the turns filled with NaN, so</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% that both signals can be plotted above each other in a different colour</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>magNoGfilt_copy = magNoGfilt;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>k = 1: size(locsTurns,1)</span><span class="warning_squiggle_rte857602304 warningHighlight857602304">;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> magNoGfilt_copy(locsTurns(k,1):locsTurns(k,2)) = NaN;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% visualising signal;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>figure;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>subplot(2,1,1)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>plot(magNoGfilt,</span><span style="color: rgb(170, 4, 249);">'b'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>plot(magNoGfilt_copy, </span><span style="color: rgb(170, 4, 249);">'r'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'Inside Straight: Filtered data with turns highlighted in blue'</span><span>)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S9'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(170, 4, 249);">off</span><span>;</span></span></div><div class = 'S10'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="12F11B09" data-testid="output_5" style="width: 889px;"><div class="figureElement" style="cursor: default;"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_164_9" widgetid="uniqName_164_9" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_164_11" widgetid="uniqName_164_11" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S18'></div></div></div><div class = 'S14'><span>(6) CALCULATIONS</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">%% Calculation</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% VRAAG LAURENS zie blauwe blaadje</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>startPos = 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>i = 1: size(locsTurns,1)</span><span class="warning_squiggle_rte857602304 warningHighlight857602304">;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> endPos = locsTurns(i,1)-1;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> inputData = dataAcc(startPos:endPos,:);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> WindowLen = size(inputData,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> ApplyRealignment = false;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> [ResultStruct] = GaitOutcomesTrunkAccFuncIH(inputData,FS,LegLength,WindowLen,ApplyRealignment,ApplyRemoveSteps); </span><span style="color: rgb(2, 128, 9);">% Naam van deze moet nog aangepast.</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">if </span><span>i ==1 </span><span style="color: rgb(2, 128, 9);">% only the firs time</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> Parameters = fieldnames(ResultStruct);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> NrParameters = length(Parameters);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">for </span><span>j = 1:NrParameters </span><span style="color: rgb(2, 128, 9);">% only works if for every bin we get the same outcomes (which is the case in this script)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> DataStraight.(</span><span class="warning_squiggle_rte857602304">[</span><span>char(Parameters(j))])(i) = ResultStruct.(</span><span class="warning_squiggle_rte857602304">[</span><span>char(Parameters(j))]);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> startPos = locsTurns(i,2)+1;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>clear </span><span style="color: rgb(170, 4, 249);">ResultStruct</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Calculate mean over the bins without turns to get 1 outcome value per parameter for inside</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% straight;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>j = 1:NrParameters</span><span class="warning_squiggle_rte857602304 warningHighlight857602304">;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span> ResultStruct.(</span><span class="warning_squiggle_rte857602304">[</span><span>char(Parameters(j))]) = nanmean(DataStraight.(</span><span class="warning_squiggle_rte857602304">[</span><span>char(Parameters(j))]))</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S9'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div><div class = 'S10'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="1B4993C4" data-testid="output_6" data-width="859" data-height="34" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="32207BDD" data-testid="output_7" data-width="859" data-height="48" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="6761CFE5" data-testid="output_8" data-width="859" data-height="62" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="C7C8DF4E" data-testid="output_9" data-width="859" data-height="76" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="94F0ACE6" data-testid="output_10" data-width="859" data-height="90" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="27BD8749" data-testid="output_11" data-width="859" data-height="104" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="BF42401A" data-testid="output_12" data-width="859" data-height="118" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="8236BCAC" data-testid="output_13" data-width="859" data-height="132" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="AAEBEE1A" data-testid="output_14" data-width="859" data-height="146" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="ACDA8683" data-testid="output_15" data-width="859" data-height="160" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="4D05722A" data-testid="output_16" data-width="859" data-height="174" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="16632CD8" data-testid="output_17" data-width="859" data-height="188" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="21DBD72B" data-testid="output_18" data-width="859" data-height="202" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="42E9BB1C" data-testid="output_19" data-width="859" data-height="216" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="782B8BFF" data-testid="output_20" data-width="859" data-height="230" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="0AC89326" data-testid="output_21" data-width="859" data-height="244" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="E2515463" data-testid="output_22" data-width="859" data-height="258" data-hashorizontaloverflow="false" style="width: 889px; max-height: 269px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="2BAC16DE" data-testid="output_23" data-width="859" data-height="272" data-hashorizontaloverflow="false" style="width: 889px; max-height: 283px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="810B2656" data-testid="output_24" data-width="859" data-height="286" data-hashorizontaloverflow="false" style="width: 889px; max-height: 297px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="41675B62" data-testid="output_25" data-width="859" data-height="300" data-hashorizontaloverflow="false" style="width: 889px; max-height: 311px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="A31B96BE" data-testid="output_26" data-width="859" data-height="314" data-hashorizontaloverflow="false" style="width: 889px; max-height: 325px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="BA375E3D" data-testid="output_27" data-width="859" data-height="328" data-hashorizontaloverflow="false" style="width: 889px; max-height: 339px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="58267D3A" data-testid="output_28" data-width="859" data-height="342" data-hashorizontaloverflow="false" style="width: 889px; max-height: 353px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="E076968E" data-testid="output_29" data-width="859" data-height="356" data-hashorizontaloverflow="false" style="width: 889px; max-height: 367px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="F7A7D385" data-testid="output_30" data-width="859" data-height="370" data-hashorizontaloverflow="false" style="width: 889px; max-height: 381px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="DDA96C2D" data-testid="output_31" data-width="859" data-height="384" data-hashorizontaloverflow="false" style="width: 889px; max-height: 395px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="FC3B4915" data-testid="output_32" data-width="859" data-height="398" data-hashorizontaloverflow="false" style="width: 889px; max-height: 409px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="C841B74A" data-testid="output_33" data-width="859" data-height="412" data-hashorizontaloverflow="false" style="width: 889px; max-height: 423px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="EB0B8CF8" data-testid="output_34" data-width="859" data-height="426" data-hashorizontaloverflow="false" style="width: 889px; max-height: 437px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="6CA34B0E" data-testid="output_35" data-width="859" data-height="440" data-hashorizontaloverflow="false" style="width: 889px; max-height: 451px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="5D4CF778" data-testid="output_36" data-width="859" data-height="454" data-hashorizontaloverflow="false" style="width: 889px; max-height: 465px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="E329E1E0" data-testid="output_37" data-width="859" data-height="468" data-hashorizontaloverflow="false" style="width: 889px; max-height: 479px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="51C2AD0B" data-testid="output_38" data-width="859" data-height="482" data-hashorizontaloverflow="false" style="width: 889px; max-height: 493px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement" uid="5F0960B2" data-testid="output_39" data-width="859" data-height="496" data-hashorizontaloverflow="false" style="width: 889px; max-height: 507px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="65F21AC5" data-testid="output_40" data-width="859" data-height="510" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="0E2A6448" data-testid="output_41" data-width="859" data-height="524" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="4FCE20FF" data-testid="output_42" data-width="859" data-height="538" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="267BCB0B" data-testid="output_43" data-width="859" data-height="552" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="97C3E506" data-testid="output_44" data-width="859" data-height="566" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="36CB609B" data-testid="output_45" data-width="859" data-height="580" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="A0A175C0" data-testid="output_46" data-width="859" data-height="594" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="8A8D774A" data-testid="output_47" data-width="859" data-height="608" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="7CF019CC" data-testid="output_48" data-width="859" data-height="622" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
SampleEntropy_V: 0.2014
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="A9B7C1A9" data-testid="output_49" data-width="859" data-height="636" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
SampleEntropy_V: 0.2014
|
||
SampleEntropy_ML: 0.2358
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="EC0450B0" data-testid="output_50" data-width="859" data-height="650" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
SampleEntropy_V: 0.2014
|
||
SampleEntropy_ML: 0.2358
|
||
SampleEntropy_AP: 0.2608
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="76ECEE0E" data-testid="output_51" data-width="859" data-height="664" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
SampleEntropy_V: 0.2014
|
||
SampleEntropy_ML: 0.2358
|
||
SampleEntropy_AP: 0.2608
|
||
LyapunovPerStrideWolf_V: 2.3378
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="555BDE94" data-testid="output_52" data-width="859" data-height="678" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
SampleEntropy_V: 0.2014
|
||
SampleEntropy_ML: 0.2358
|
||
SampleEntropy_AP: 0.2608
|
||
LyapunovPerStrideWolf_V: 2.3378
|
||
LyapunovPerStrideWolf_ML: 2.0830
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="4E516E6D" data-testid="output_53" data-width="859" data-height="692" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
SampleEntropy_V: 0.2014
|
||
SampleEntropy_ML: 0.2358
|
||
SampleEntropy_AP: 0.2608
|
||
LyapunovPerStrideWolf_V: 2.3378
|
||
LyapunovPerStrideWolf_ML: 2.0830
|
||
LyapunovPerStrideWolf_AP: 2.4095
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="6D782227" data-testid="output_54" data-width="859" data-height="706" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
SampleEntropy_V: 0.2014
|
||
SampleEntropy_ML: 0.2358
|
||
SampleEntropy_AP: 0.2608
|
||
LyapunovPerStrideWolf_V: 2.3378
|
||
LyapunovPerStrideWolf_ML: 2.0830
|
||
LyapunovPerStrideWolf_AP: 2.4095
|
||
LyapunovPerStrideRosen_V: 1.5914
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="3396F107" data-testid="output_55" data-width="859" data-height="720" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;" data-scroll-top="459" data-scroll-left="0"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
SampleEntropy_V: 0.2014
|
||
SampleEntropy_ML: 0.2358
|
||
SampleEntropy_AP: 0.2608
|
||
LyapunovPerStrideWolf_V: 2.3378
|
||
LyapunovPerStrideWolf_ML: 2.0830
|
||
LyapunovPerStrideWolf_AP: 2.4095
|
||
LyapunovPerStrideRosen_V: 1.5914
|
||
LyapunovPerStrideRosen_ML: 1.2964
|
||
</div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsVariableStringElement scrollableOutput" uid="45400C78" data-testid="output_56" data-width="859" data-height="734" data-hashorizontaloverflow="false" style="width: 889px; max-height: 261px;" data-scroll-top="0" data-scroll-left="0"><div class="textElement"><div><span class="variableNameElement">ResultStruct = <span class="headerElement">struct with fields:</span></span></div><div> StrideRegularity_V: 0.9005
|
||
StrideRegularity_ML: 0.7110
|
||
StrideRegularity_AP: 0.6643
|
||
StrideRegularity_All: 0.7765
|
||
RelativeStrideVariability_V: 0.0995
|
||
RelativeStrideVariability_ML: 0.2890
|
||
RelativeStrideVariability_AP: 0.3357
|
||
RelativeStrideVariability_All: 0.2235
|
||
StrideTimeSamples: 217.5556
|
||
StrideTimeSeconds: 2.1756
|
||
GaitSymm_V: 5.7952
|
||
GaitSymm_AP: 7.0128
|
||
GaitSymmIndex: 2.3916
|
||
StepLengthMean: 11.9893
|
||
Distance: 83.0819
|
||
WalkingSpeedMean: 6.1785
|
||
StrideTimeVariability: 0.0200
|
||
StrideSpeedVariability: 0.1990
|
||
StrideLengthVariability: 0.5502
|
||
StrideTimeVariabilityOmitOutlier: 6.0071
|
||
StrideSpeedVariabilityOmitOutlier: 0.2542
|
||
StrideLengthVariabilityOmitOutlier: 0.3722
|
||
IndexHarmonicity_V: 0.4981
|
||
IndexHarmonicity_ML: 0.7579
|
||
IndexHarmonicity_AP: 0.8968
|
||
IndexHarmonicity_All: 0.6349
|
||
HarmonicRatio_V: 3.6118
|
||
HarmonicRatio_ML: 3.4148
|
||
HarmonicRatio_AP: 2.5141
|
||
HarmonicRatioP_V: 21.1829
|
||
HarmonicRatioP_ML: 19.5829
|
||
HarmonicRatioP_AP: 12.5052
|
||
FrequencyVariability_V: 0.2160
|
||
FrequencyVariability_ML: 0.4381
|
||
FrequencyVariability_AP: 0.1981
|
||
StrideFrequency: 0.6364
|
||
LyapunovWolf_V: 1.4401
|
||
LyapunovWolf_ML: 1.2904
|
||
LyapunovWolf_AP: 1.5238
|
||
LyapunovRosen_V: 0.9931
|
||
LyapunovRosen_ML: 0.8064
|
||
LyapunovRosen_AP: 1.0984
|
||
SampleEntropy_V: 0.2014
|
||
SampleEntropy_ML: 0.2358
|
||
SampleEntropy_AP: 0.2608
|
||
LyapunovPerStrideWolf_V: 2.3378
|
||
LyapunovPerStrideWolf_ML: 2.0830
|
||
LyapunovPerStrideWolf_AP: 2.4095
|
||
LyapunovPerStrideRosen_V: 1.5914
|
||
LyapunovPerStrideRosen_ML: 1.2964
|
||
LyapunovPerStrideRosen_AP: 1.7481
|
||
</div></div></div></div></div></div><h2 class = 'S13' id = 'H_4847D0D3' ><span>AggregateFunction;</span></h2></div>
|
||
<br>
|
||
<!--
|
||
##### SOURCE BEGIN #####
|
||
%% Gait Variability Analysis CLBP
|
||
|
||
% Gait Variability Analysis
|
||
% Script created for MAP 2020-2021
|
||
% adapted from Claudine Lamoth and Iris Hagoort
|
||
% version1 October 2020
|
||
|
||
% Input: needs mat file which contains all raw accelerometer data
|
||
% Input: needs excel file containing the participant information including
|
||
% leg length.
|
||
|
||
|
||
%% Clear and close;
|
||
|
||
clear;
|
||
close all;
|
||
%% Load data;
|
||
% Select 1 trial. *For loop to import all data will be used at a later stage*
|
||
|
||
[FNaam,FilePad] = uigetfile('*.xls','Load phyphox data...');
|
||
filename =[FilePad FNaam];
|
||
PhyphoxData = xlsread(filename)
|
||
|
||
%load('Phyphoxdata.mat'); % loads accelerometer data, is stored in struct with name AccData
|
||
%load('ExcelInfo.mat');
|
||
%Participants = fields(AccData);
|
||
%% Settings;
|
||
|
||
LegLength = 98 % LegLength info not available!
|
||
%LegLengths = excel.data.GeneralInformation(:,5); % leglength info is in 5th column
|
||
LegLengthsM = LegLength/100; % convert to m
|
||
t1 = length(PhyphoxData(:,1)); % Number of Samples
|
||
|
||
|
||
FS = 100; % sample frequency
|
||
Time_ms = PhyphoxData(:,1);
|
||
accX = PhyphoxData(:,2);
|
||
accY = PhyphoxData(:,3);
|
||
accZ = PhyphoxData(:,4);
|
||
AccData = (PhyphoxData(:,[1 2 3 4])); % matrix with accelerometer data
|
||
|
||
Start = 1; % Start time (s) for plot
|
||
End = 60; % End time (s) for plot
|
||
T1 = Start*FS; % Start time calculated from Hz
|
||
T2 = End*FS; % End time calculated from Hz
|
||
c = (Start:(1/FS):End)'; % Time STEPSIZE = 1/100
|
||
%% Plot the data;
|
||
% *(1) first step in notebook*
|
||
%
|
||
% 1st column is time data (ms)
|
||
%
|
||
% 2nd column is X, medio-lateral: + left, - right
|
||
%
|
||
% 3rd column is Y, vertical: + downwards, - upwards
|
||
%
|
||
% 4th column is Z, anterior- posterior : + forwards, - backwards
|
||
|
||
AccX = accX(T1:T2); % Signal over timeframe
|
||
AccY = accY(T1:T2); % Signal over timeframe
|
||
AccZ = accZ(T1:T2); % Signal over timeframe
|
||
|
||
figure(1);
|
||
plot(c,AccX,c,AccY,c,AccZ); % Plot signal over timeframe
|
||
title('acc signal not filtered - First Minute')
|
||
xlabel('Time (s)');
|
||
ylabel('acceleration (g)');
|
||
legend('X - ML','Y - Vertical','Z - AP')
|
||
%%
|
||
%%
|
||
%% Calculate parameters;
|
||
% calculate only for the first participant;
|
||
|
||
inputData = AccData;
|
||
WindowLength = FS*10; % why FS*10?
|
||
ApplyRealignment = true; % reorder data to 1 = V; 2= ML, 3 = AP
|
||
ApplyRemoveSteps = false; % if true - removes first 30 and last 30 steps
|
||
[ResultStruct] = GaitOutcomesTrunkAccFuncIH(inputData,FS,LegLength,WindowLength,ApplyRealignment,ApplyRemoveSteps)
|
||
%%
|
||
% *output:*
|
||
%
|
||
% - NaN GaitSymm_V:
|
||
%%
|
||
% * Gait Synmmetry is only informative in AP/V direction: See Tura A, Raggi
|
||
% M, Rocchi L, Cutti AG, Chiari L: Gait symmetry and regularity in
|
||
% transfemoral amputees assessed by trunk accelerations. J Neuroeng Rehabil 2010,
|
||
% 7:4
|
||
%%
|
||
% - SampEn has two advantages over ApEn: data length independence and a relatively
|
||
% trouble-free implementation.
|
||
%
|
||
% - Some Settings ResulStruct
|
||
%
|
||
% *IgnoreMinMaxStrides = 0.10;* % Number or percentage of
|
||
% highest&lowest values ignored for improved variability estimation
|
||
%
|
||
% *N_Harm = 12;* % Number of harmonics
|
||
% used for harmonic ratio, index of harmonicity and phase fluctuation
|
||
%
|
||
% *Lyap_m = 7;* % Embedding dimension
|
||
% (used in Lyapunov estimations)
|
||
%
|
||
% *Lyap_FitWinLen* = round(60/100*FS); % Fitting window length (used in
|
||
% Lyapunov estimations Rosenstein's method)
|
||
%
|
||
% *Sen_m = 5;* % Dimension,
|
||
% the length of the subseries to be matched (used in sample entropy estimation)
|
||
%
|
||
% *Sen_r = 0.3;* % Tolerance,
|
||
% the maximum distance between two samples to qualify as match, relative to std
|
||
% of DataIn (used in sample entropy estimation)
|
||
% Index of harmonicity (Lamoth et al. 2002)
|
||
% by means of a discrete Fourier transform (DFT). The peak power at the first
|
||
% six harmonics was estimated and, subsequently, the index of harmonicity was
|
||
% defined as ; *FORMULA*
|
||
%
|
||
% where P0 is the power spectral density of the fundamental frequency (first
|
||
% harmonic) and $ Pi the cumulative sum of power spectral density of the fundamental
|
||
% frequency and the first five superharmonics. A power ratio of 1 indicates that
|
||
% the rotation of the pelvis or the thorax is perfectly harmonic. In view of possible
|
||
% drift, which could lead to missing or widening peaks, the power spectral density
|
||
% of each peak was calculated within the frequency bands of +0.1 and −0.1 Hz of
|
||
% the peak frequency value. All power spectral densities were normalized by dividing
|
||
% the power by the sum of the total power spectrum, which equals the variance.
|
||
% Lyapunov exponents (Wolfs vs. Rosenstein)
|
||
% The W-algorithm is advocated for use when examining local dynamic stability
|
||
% with small gait data sets.
|
||
%% Visualize step detection;
|
||
% function [ResultStruct] = GaitVariabilityAnalysisIH_WithoutTurns(inputData,FS,LegLength,ApplyRealignment,ApplyRemoveSteps);
|
||
%
|
||
% *script for analysing straight parts*
|
||
%
|
||
% (1) Realign Data
|
||
|
||
%% Realign data
|
||
data = inputData(:, [3,2,4]); % reorder data to 1 = V; 2= ML, 3 = AP
|
||
|
||
%Realign sensor data to VT-ML-AP frame
|
||
if ApplyRealignment % apply relignment as described in Rispens S, Pijnappels M, van Schooten K, Beek PJ, Daffertshofer A, van Die?n JH (2014).
|
||
% Consistency of gait characteristics as determined from acceleration data collected at different trunk locations. Gait Posture 2014;40(1):187-92.
|
||
[RealignedAcc, ~] = RealignSensorSignalHRAmp(data, FS);
|
||
dataAcc = RealignedAcc;
|
||
end
|
||
|
||
%%
|
||
% (2) Filter Data
|
||
|
||
|
||
%% Filter data strongly & Determine location of steps
|
||
|
||
% Filter data
|
||
[B,A] = butter(2,3/(FS/2),'low'); % Filters data very strongly which is needed to determine turns correctly
|
||
dataStepDetection = filtfilt(B,A,dataAcc);
|
||
|
||
%%
|
||
% (3) Determine Location of steps
|
||
|
||
% Determine steps;
|
||
|
||
%%%%%%% HIER MISSCHIEN ALTERNATIEF VOOR VAN RISPENS %%%%%%%%%%%%%
|
||
|
||
% Explanation of method: https://nl.mathworks.com/help/supportpkg/beagleboneblue/ref/counting-steps-using-beagleboneblue-hardware-example.html
|
||
% From website: To convert the XYZ acceleration vectors at each point in time into scalar values,
|
||
% calculate the magnitude of each vector. This way, you can detect large changes in overall acceleration,
|
||
% such as steps taken while walking, regardless of device orientation.
|
||
|
||
magfilt = sqrt(sum((dataStepDetection(:,1).^2) + (dataStepDetection(:,2).^2) + (dataStepDetection(:,3).^2), 2));
|
||
magNoGfilt = magfilt - mean(magfilt);
|
||
minPeakHeight2 = std(magNoGfilt);
|
||
[pks, locs] = findpeaks(magNoGfilt, 'MINPEAKHEIGHT', minPeakHeight2); % for step detection
|
||
numStepsOption2_filt = numel(pks); % counts number of steps;
|
||
%%
|
||
% (4) Determine location of turns
|
||
|
||
%% Determine locations of turns;
|
||
|
||
diffLocs = diff(locs); % calculates difference in step location
|
||
avg_diffLocs = mean(diffLocs); % average distance between steps
|
||
std_diffLocs = std(diffLocs); % standard deviation of distance between steps
|
||
|
||
figure(2);
|
||
findpeaks(diffLocs, 'MINPEAKHEIGHT', avg_diffLocs, 'MINPEAKDISTANCE',5); % these values have been chosen based on visual inspection of the signal
|
||
line([1 length(diffLocs)],[avg_diffLocs avg_diffLocs])
|
||
[pks_diffLocs, locs_diffLocs] = findpeaks(diffLocs, 'MINPEAKHEIGHT', avg_diffLocs,'MINPEAKDISTANCE',5);
|
||
locsTurns = [locs(locs_diffLocs), locs(locs_diffLocs+1)];
|
||
|
||
%%
|
||
% (5) Visualize turns
|
||
|
||
%% Visualizing turns
|
||
|
||
% Duplying signal + visualing
|
||
% to make second signal with the locations of the turns filled with NaN, so
|
||
% that both signals can be plotted above each other in a different colour
|
||
|
||
magNoGfilt_copy = magNoGfilt;
|
||
for k = 1: size(locsTurns,1);
|
||
magNoGfilt_copy(locsTurns(k,1):locsTurns(k,2)) = NaN;
|
||
end
|
||
|
||
|
||
% visualising signal;
|
||
figure;
|
||
subplot(2,1,1)
|
||
hold on;
|
||
plot(magNoGfilt,'b')
|
||
plot(magNoGfilt_copy, 'r');
|
||
title('Inside Straight: Filtered data with turns highlighted in blue')
|
||
hold off;
|
||
|
||
%%
|
||
% (6) CALCULATIONS
|
||
|
||
%% Calculation
|
||
% VRAAG LAURENS zie blauwe blaadje
|
||
|
||
startPos = 1;
|
||
for i = 1: size(locsTurns,1);
|
||
endPos = locsTurns(i,1)-1;
|
||
|
||
inputData = dataAcc(startPos:endPos,:);
|
||
WindowLen = size(inputData,1);
|
||
ApplyRealignment = false;
|
||
[ResultStruct] = GaitOutcomesTrunkAccFuncIH(inputData,FS,LegLength,WindowLen,ApplyRealignment,ApplyRemoveSteps); % Naam van deze moet nog aangepast.
|
||
|
||
if i ==1 % only the firs time
|
||
Parameters = fieldnames(ResultStruct);
|
||
NrParameters = length(Parameters);
|
||
end
|
||
|
||
for j = 1:NrParameters % only works if for every bin we get the same outcomes (which is the case in this script)
|
||
DataStraight.([char(Parameters(j))])(i) = ResultStruct.([char(Parameters(j))]);
|
||
end
|
||
startPos = locsTurns(i,2)+1;
|
||
|
||
end
|
||
|
||
clear ResultStruct;
|
||
|
||
% Calculate mean over the bins without turns to get 1 outcome value per parameter for inside
|
||
% straight;
|
||
|
||
for j = 1:NrParameters;
|
||
ResultStruct.([char(Parameters(j))]) = nanmean(DataStraight.([char(Parameters(j))]))
|
||
end
|
||
%% AggregateFunction;
|
||
##### SOURCE END #####
|
||
--></body></html> |