135 lines
4.4 KiB
Matlab
135 lines
4.4 KiB
Matlab
function [L_Estimate,ExtraArgsOut] = CalcMaxLyapWolfFixedEvolv(ThisTimeSeries,FS,ExtraArgsIn)
|
|
|
|
%% Description
|
|
% This function calculates the maximum Lyapunov exponent from a time
|
|
% series, based on the method described by Wolf et al. in
|
|
% Wolf, A., et al., Determining Lyapunov exponents from a time series.
|
|
% Physica D: 8 Nonlinear Phenomena, 1985. 16(3): p. 285-317.
|
|
%
|
|
% Input:
|
|
% ThisTimeSeries: a vector or matrix with the time series
|
|
% FS: sample frequency of the ThisTimeSeries
|
|
% ExtraArgsIn: a struct containing optional input arguments
|
|
% J (embedding delay)
|
|
% m (embedding dimension)
|
|
% Output:
|
|
% L_Estimate: The Lyapunov estimate
|
|
% ExtraArgsOut: a struct containing the additional output arguments
|
|
% J (embedding delay)
|
|
% m (embedding dimension)
|
|
|
|
%% Copyright
|
|
% COPYRIGHT (c) 2012 Sietse Rispens, VU University Amsterdam
|
|
%
|
|
% This program is free software: you can redistribute it and/or modify
|
|
% it under the terms of the GNU General Public License as published by
|
|
% the Free Software Foundation, either version 3 of the License, or
|
|
% (at your option) any later version.
|
|
%
|
|
% This program is distributed in the hope that it will be useful,
|
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
% GNU General Public License for more details.
|
|
%
|
|
% You should have received a copy of the GNU General Public License
|
|
% along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
%% Author
|
|
% Sietse Rispens
|
|
|
|
%% History
|
|
% April 2012, initial version of CalcMaxLyapWolf
|
|
% 23 October 2012, use fixed evolve time instead of adaptable
|
|
|
|
if nargin > 2
|
|
if isfield(ExtraArgsIn,'J')
|
|
J=ExtraArgsIn.J;
|
|
end
|
|
if isfield(ExtraArgsIn,'m')
|
|
m=ExtraArgsIn.m;
|
|
end
|
|
end
|
|
|
|
%% Initialize output args
|
|
L_Estimate=nan;ExtraArgsOut.J=nan;ExtraArgsOut.m=nan;
|
|
|
|
%% Some checks
|
|
% predefined J and m should not be NaN or Inf
|
|
if (exist('J','var') && ~isempty(J) && ~isfinite(J)) || (exist('m','var') && ~isempty(m) && ~isfinite(m))
|
|
warning('Predefined J and m cannot be NaN or Inf');
|
|
return;
|
|
end
|
|
% multidimensional time series need predefined J and m
|
|
if size(ThisTimeSeries,2) > 1 && (~exist('J','var') || ~exist('m','var') || isempty(J) || isempty(m))
|
|
warning('Multidimensional time series needs predefined J and m, can''t determine Lyapunov');
|
|
return;
|
|
end
|
|
%Check that there are no NaN or Inf values in the TimeSeries
|
|
if any(~isfinite(ThisTimeSeries(:)))
|
|
warning('Time series contains NaN or Inf, can''t determine Lyapunov');
|
|
return;
|
|
end
|
|
%Check that there is variation in the TimeSeries
|
|
if ~(nanstd(ThisTimeSeries) > 0)
|
|
warning('Time series is constant, can''t determine Lyapunov');
|
|
return;
|
|
end
|
|
|
|
%% Determine J
|
|
if ~exist('J','var') || isempty(J)
|
|
% Calculate mutual information and take first local minimum Tau as J
|
|
bV = min(40,floor(sqrt(size(ThisTimeSeries,1))));
|
|
tauVmax = 70;
|
|
[mutMPro,cummutMPro,minmuttauVPro] = MutualInformationHisPro(ThisTimeSeries,(0:tauVmax),bV,1); % (xV,tauV,bV,flag)
|
|
if isnan(minmuttauVPro)
|
|
display(mutMPro);
|
|
warning('minmuttauVPro is NaN. Consider increasing tauVmax.');
|
|
return;
|
|
end
|
|
J=minmuttauVPro;
|
|
end
|
|
ExtraArgsOut.J=J;
|
|
|
|
%% Determine m
|
|
if ~exist('m','var') || isempty(m)
|
|
escape = 10;
|
|
max_m = 20;
|
|
max_fnnM = 0.02;
|
|
mV = 0;
|
|
fnnM = 1;
|
|
for mV = 2:max_m % for m=1, FalseNearestNeighbors is slow and lets matlab close if N>500000
|
|
fnnM = FalseNearestNeighborsSR(ThisTimeSeries,J,mV,escape,FS); % (xV,tauV,mV,escape,theiler)
|
|
if fnnM <= max_fnnM || isnan(fnnM)
|
|
break
|
|
end
|
|
end
|
|
if fnnM <= max_fnnM
|
|
m = mV;
|
|
else
|
|
warning('Too many false nearest neighbours');
|
|
return;
|
|
end
|
|
end
|
|
ExtraArgsOut.m=m;
|
|
|
|
%% Create state space based upon J and m
|
|
N_ss = size(ThisTimeSeries,1)-(m-1)*J;
|
|
StateSpace=nan(N_ss,m*size(ThisTimeSeries,2));
|
|
for dim=1:size(ThisTimeSeries,2),
|
|
for delay=1:m,
|
|
StateSpace(:,(dim-1)*m+delay)=ThisTimeSeries((1:N_ss)'+(delay-1)*J,dim);
|
|
end
|
|
end
|
|
|
|
%% Parameters for Lyapunov estimation
|
|
CriticalLen=J*m;
|
|
max_dist = sqrt(sum(std(StateSpace).^2))/10;
|
|
max_dist_mult = 5;
|
|
min_dist = max_dist/2;
|
|
max_theta = 0.3;
|
|
evolv = J;
|
|
|
|
%% Calculate Lambda
|
|
[L_Estimate]=div_wolf_fixed_evolv(StateSpace, FS, min_dist, max_dist, max_dist_mult, max_theta, CriticalLen, evolv);
|
|
|