Merge pull request 'FastQC, Trimming, Overall QC (initial)' (#1) from P300299/system_genetics:master into master
Reviewed-on: #1
This commit is contained in:
commit
e2206cbc39
|
@ -0,0 +1,4 @@
|
|||
|
||||
.DS_Store
|
||||
*.nosync
|
||||
*.RData
|
|
@ -0,0 +1,5 @@
|
|||
# The command to do a FastQC on a fastq file is
|
||||
file="file_to_analyse.fq.gz"
|
||||
fastqc_out="./path/to/fastqc/output/dir"
|
||||
|
||||
fastqc -o "$fastqc_out" "$file"
|
|
@ -0,0 +1,81 @@
|
|||
# Principle Component Analysis
|
||||
# Normalized with limma::voom
|
||||
library(limma)
|
||||
library(tidyverse)
|
||||
|
||||
|
||||
# expression.data. Has columns:
|
||||
# - Gene (gene identifier)
|
||||
# - [Sample identifiers]
|
||||
expression.data <- "mrna_counts_table.csv"
|
||||
# results.dir. The directory of where to put the resulting tables (and later your plots.)
|
||||
results.dir <- "results"
|
||||
|
||||
|
||||
# PCA variables
|
||||
do.center = TRUE
|
||||
do.scale = FALSE
|
||||
|
||||
|
||||
# The analysis
|
||||
# We ise prcomp to calculate the PCAs. Afterwards you should plot the results.
|
||||
norm.expr.data <- expression.data %>%
|
||||
tibble::column_to_rownames("Gene")
|
||||
norm.expr.data <- norm.expr.data[rowSums(norm.expr.data) >= 10,] %>%
|
||||
limma::voom() %>%
|
||||
as.matrix()
|
||||
|
||||
# Principle Component analysis
|
||||
results.dir.pca <- file.path(results.dir, "principle.components")
|
||||
dir.create(results.dir.pca, recursive=TRUE)
|
||||
|
||||
norm.expr.data.pcs <- norm.expr.data %>%
|
||||
t() %>%
|
||||
stats::prcomp(
|
||||
center = do.center,
|
||||
scale. = do.scale
|
||||
)
|
||||
|
||||
# Write summary of PCAs to files
|
||||
pcs.summery <- summary(norm.expr.data.pcs)
|
||||
pcs.summery$importance %>%
|
||||
t() %>%
|
||||
as.data.frame() %>%
|
||||
tibble::rownames_to_column("PC.name") %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.pca, "importance.csv")
|
||||
)
|
||||
|
||||
pcs.summery$x %>%
|
||||
t() %>%
|
||||
as.data.frame() %>%
|
||||
tibble::rownames_to_column("ensembl.id") %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.pca, "values.csv")
|
||||
)
|
||||
|
||||
pcs.summery$rotation %>%
|
||||
t() %>%
|
||||
as.data.frame() %>%
|
||||
tibble::rownames_to_column("sample.id") %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.pca, "rotation.csv")
|
||||
)
|
||||
|
||||
data.frame(
|
||||
rownames = names(pcs.summery$center),
|
||||
center = pcs.summery$center,
|
||||
scale = pcs.summery$scale
|
||||
) %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.pca, "rest.csv")
|
||||
)
|
||||
|
||||
# Not saved: pcs.summery$sdev,
|
||||
|
||||
|
||||
# Next thing to do:
|
||||
# - (Optional) scree plot - to determine the optimal cutoff for PCA inclusion based on explaination of variance
|
||||
# - (Optional) eigencorplot - to correlate PCAs to clinical variables so that you know which PCA to include for which analysis
|
||||
# - (Optional) pairsplot - plot multiple PCAs against each other in a single figure
|
||||
# - Plot the first couple of PCAs against each other
|
|
@ -0,0 +1,112 @@
|
|||
# Gender QC
|
||||
# Normalized with limma::voom
|
||||
library(GSVA)
|
||||
library(limma)
|
||||
library(edgeR)
|
||||
library(tidyverse)
|
||||
|
||||
|
||||
# expression.data. Has columns:
|
||||
# - Gene (gene identifier)
|
||||
# - [Sample identifiers]
|
||||
expression.data <- "mrna_counts_table.csv"
|
||||
# master.Table. Has columns:
|
||||
# - GenomeScan_ID
|
||||
# - gender, levels = c("male", "female")
|
||||
# - age
|
||||
# - factor(smoking.status, levels = c("Ex-smoker", "Current smoker"))
|
||||
master.Table <- "patient_table.csv"
|
||||
# results.dir. The directory of where to put the resulting tables (and later your plots.)
|
||||
results.dir <- "results"
|
||||
|
||||
|
||||
# The analysis
|
||||
# We first do a differential expression analysis on gender using EdgeR.
|
||||
# Afterwards you should plot these results.
|
||||
x.genes <- gene.data %>%
|
||||
dplyr::filter(chromosome_name == "X") %>%
|
||||
dplyr::pull(ensembl_gene_id)
|
||||
|
||||
y.genes <- gene.data %>%
|
||||
dplyr::filter(chromosome_name == "Y") %>%
|
||||
dplyr::pull(ensembl_gene_id)
|
||||
|
||||
# Gender QC
|
||||
results.dir.gender <- file.path(results.dir, "gender.check")
|
||||
dir.create(results.dir.gender, recursive=TRUE)
|
||||
|
||||
# Differential Expression on Gender
|
||||
gender.qc.patients <- master.Table %>%
|
||||
dplyr::filter(
|
||||
!is.na(GenomeScan_ID)
|
||||
) %>%
|
||||
dplyr::mutate(
|
||||
gender = factor(gender, levels = c("male", "female")),
|
||||
age = as.numeric(age),
|
||||
smoking.status = factor(smoking.status, levels = c("Ex-smoker", "Current smoker"))
|
||||
) %>%
|
||||
dplyr::filter(
|
||||
!is.na(gender)
|
||||
)
|
||||
gender.qc.sample.order <- gender.qc.patients %>%
|
||||
dplyr::pull(GenomeScan_ID)
|
||||
|
||||
gender.qc.expression.data <- expression.data %>%
|
||||
tibble::column_to_rownames("Gene") %>%
|
||||
select.columns.in.order(gender.qc.sample.order) %>%
|
||||
as.matrix()
|
||||
|
||||
design <- model.matrix( ~0 + gender, data = gender.qc.patients)
|
||||
|
||||
DGEL <- edgeR::DGEList(gender.qc.expression.data)
|
||||
keep <- edgeR::filterByExpr(DGEL)
|
||||
keep[names(keep) %in% x.genes] <- TRUE
|
||||
keep[names(keep) %in% y.genes] <- TRUE
|
||||
DGEL <- DGEL[keep, , keep.lib.sizes=FALSE]
|
||||
DGEL <- edgeR::calcNormFactors(DGEL, method = "TMM")
|
||||
|
||||
DGEL <- edgeR::estimateDisp(DGEL, design)
|
||||
fit <- edgeR::glmQLFit(DGEL,design)
|
||||
|
||||
contrasts <- limma::makeContrasts(
|
||||
gender = gendermale - genderfemale,
|
||||
levels = design
|
||||
)
|
||||
qlf <- edgeR::glmQLFTest(fit, contrast = contrasts[,"gender"])
|
||||
|
||||
gender.qc.results <- edgeR::topTags(
|
||||
qlf,
|
||||
n=nrow(DGEL)
|
||||
)$table %>%
|
||||
tibble::rownames_to_column("ensembl.id") %>%
|
||||
dplyr::left_join(
|
||||
y = gene.data,
|
||||
by = c("ensembl.id" = "ensembl_gene_id")
|
||||
) %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.gender, "differential.expression.on.gender.csv")
|
||||
)
|
||||
|
||||
# Plotting of gender expression
|
||||
results.dir.gender.plot <- file.path(results.dir.gender, "img")
|
||||
dir.create(results.dir.gender.plot, recursive=TRUE)
|
||||
|
||||
gender.qc.genes.to.plot <- gender.qc.results %>%
|
||||
dplyr::arrange(PValue) %>%
|
||||
dplyr::group_by(chromosome_name) %>%
|
||||
dplyr::filter(
|
||||
(
|
||||
chromosome_name %in% c("X", "Y") &
|
||||
FDR < 0.05 &
|
||||
dplyr::row_number() <= 5
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# Next thing to do:
|
||||
# - Plot the normalized expressino values for the genes in gender.qc.genes.to.plot in a boxplot, split and colored by gender.
|
||||
# - (Optional) Do a GSVA with as genesets the genes found in gender.qc.genes.to.plot. Plot the boxplots as per the previous point.
|
||||
# - (Optional) Plot the number of Y-chromosome reads devided by the number of X chromosome reads in a boxplot as per the first point.
|
||||
# x=$(samtools view -q 20 -f 2 $bam_file X | wc -l)
|
||||
# y=$(samtools view -q 20 -f 2 $bam_file Y | wc -l)
|
||||
# - (Optional) Plot the number of Y-chromosome SNPs devided by the number of X chromosome SNPs in a boxplot as per the first point.
|
|
@ -0,0 +1,39 @@
|
|||
# Total counts per sample
|
||||
# Normalized with limma::voom
|
||||
library(limma)
|
||||
library(tidyverse)
|
||||
|
||||
|
||||
# expression.data. Has columns:
|
||||
# - Gene (gene identifier)
|
||||
# - [Sample identifiers]
|
||||
expression.data <- "mrna_counts_table.csv"
|
||||
# master.Table. Has columns:
|
||||
# - GenomeScan_ID
|
||||
# - gender, levels = c("male", "female")
|
||||
# - age
|
||||
# - factor(smoking.status, levels = c("Ex-smoker", "Current smoker"))
|
||||
master.Table <- "patient_table.csv"
|
||||
# results.dir. The directory of where to put the resulting tables (and later your plots.)
|
||||
results.dir <- "results"
|
||||
|
||||
|
||||
# The analysis
|
||||
# We calculate the number of mapped reads per sample.
|
||||
total.count.per.sample <- expression.data %>%
|
||||
tibble::column_to_rownames("Gene") %>%
|
||||
colSums()
|
||||
|
||||
data.frame(
|
||||
sample = names(total.count.per.sample),
|
||||
counts = as.numeric(total.count.per.sample)
|
||||
) %>%
|
||||
readr::write_csv(file.path(results.dir, "total.counts.per.sample.csv"))
|
||||
|
||||
|
||||
# Next thing to do:
|
||||
# - Check the number of reads per sample in total.counts.per.sample.csv
|
||||
# - Plot the reads distribution (all reads) per sample in a boxplot.
|
||||
# - (Optional) Calculate the number of unmapped, multimapped, unique mapped to
|
||||
# feature and unique mapped to no feature and plot these in a stacked bar graph.
|
||||
|
Loading…
Reference in New Issue