Compare commits

..

No commits in common. "master" and "step3/star-alignment-snippet" have entirely different histories.

8 changed files with 45 additions and 169 deletions

View File

@ -1,12 +1,5 @@
#!/bin/bash
R1="sample1_R1.fastq.gz"
R2="sample1_R2.fastq.gz"
# The command to do a FastQC on a fastq file is
file="file_to_analyse.fq.gz"
fastqc_out="./path/to/fastqc/output/dir"
PROJECT_DIRECTORY="/groups/umcg-griac/tmp01/rawdata/$(whoami)/rnaseq"
FASTQC_OUT="${PROJECT_DIRECTORY}/step1/"
mkdir -p "${FASTQC_OUT}"
# Run FastQC on paired-end data.
fastqc \
-o "${FASTQC_OUT}" \
"${R1}" "${R2}"
fastqc -o "$fastqc_out" "$file"

View File

@ -1,12 +1,9 @@
#!/bin/bash
#
# Reference: http://www.usadellab.org/cms/?page=trimmomatic
# reference: http://www.usadellab.org/cms/?page=trimmomatic
module load Trimmomatic
PROJECT_DIRECTORY="/groups/umcg-griac/tmp01/rawdata/$(whoami)/rnaseq"
FASTQ_OUT="${PROJECT_DIRECTORY}/step2/"
mkdir -p "${FASTQ_OUT}"
# Adapters can be found at
@ -14,26 +11,16 @@ mkdir -p "${FASTQ_OUT}"
# But should be verified with FastQC, or in another way.
# Trimmomatic example Paired end data.
#
# Flags:
# - ILLUMINACLIP: Cut adapter and other illumina-specific sequences from the
# read.
# - SLIDINGWINDOW: Perform a sliding window trimming, cutting once the average
# quality within the window falls below a threshold.
# - LEADING: Cut bases off the start of a read, if below a threshold quality.
# - TRAILING: Cut bases off the end of a read, if below a threshold quality.
# - HEADCROP: Cut the specified number of bases from the start of the read.
# - MINLEN: Drop the read if it is below a specified length.
# (Example) Paired end
java -jar $EBROOTTRIMMOMATIC/trimmomatic.jar PE \
-phred33 \
sample1_R1.fastq.gz \
sample1_R2.fastq.gz \
"${FASTQ_OUT}/sample1_R1_paired.fastq.gz" \
"${FASTQ_OUT}/sample1_R1_unpaired.fastq.gz" \
"${FASTQ_OUT}/sample1_R2_paired.fastq.gz" \
"${FASTQ_OUT}/sample1_R2_unpaired.fastq.gz" \
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 \
input_forward.fq.gz \
input_reverse.fq.gz \
output_forward_paired.fq.gz \
output_forward_unpaired.fq.gz \
output_reverse_paired.fq.gz \
output_reverse_unpaired.fq.gz \
ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 \
LEADING:3 \
TRAILING:3 \
SLIDINGWINDOW:4:25 \
@ -41,11 +28,11 @@ java -jar $EBROOTTRIMMOMATIC/trimmomatic.jar PE \
MINLEN:50
# Example single end data.
# (Example) Single end
java -jar $EBROOTTRIMMOMATIC/trimmomatic.jar SE \
-phred33 \
sample1.fastq.gz \
output.fastq.gz \
input.fq.gz \
output.fq.gz \
ILLUMINACLIP:TruSeq3-SE:2:30:10 \
LEADING:3 \
TRAILING:3 \

View File

@ -2,42 +2,32 @@
#
# Align reads against reference genome.
REFERENCE_DATA="/groups/umcg-griac/prm03/rawdata/reference/genome"
PROJECT_DIRECTORY="/groups/umcg-griac/tmp01/rawdata/$(whoami)/rnaseq"
# Store the generated `sample1_Aligned.sortedByCoord.out.bam` in this dir.
ALIGNMENT_OUTPUT="${PROJECT_DIRECTORY}/step3/alignment"
STORAGE="/groups/umcg-griac/tmp04/rawdata/$(whoami)/step3"
# Store genome index in this location:.
GENOME_INDEX="${STORAGE}/genome_index"
mkdir -p "${GENOME_INDEX}"
# Store the generated `Aligned.sortedByCoord.out.bam` in this dir.
ALIGNMENT_OUTPUT="${STORAGE}/alignment"
mkdir -p "${ALIGNMENT_OUTPUT}"
# 1) Generate genome index (optional).
#
# Depending on your read size, reference genome and annotation, you may need to
# generate a new genome index. In most cases, this is not necessary and you can
# directly use the pre-build genome index from the cluster:
#
# GENOME_INDEX="${REFERENCE_DATA}/index_GRCh38_gtf100_overhang100"
#
# and ignore the first STAR command below.
# 1) Generate genome index.
#
# N.B.:
# - We're assuming a read size of 100 bp (--sjdbOverhang 100). An alternative
# cut-off is 150, for low-input methods. In general, refer back to the
# - We're assuming a read size of 100 bp (--sjdbOverhang 100). Refer back to the
# previous quality control steps if you are unsure about the size. In case of
# reads of varying length, the ideal value is max(ReadLength)-1.
# - If you're using gzip compressed reference data, i.e., .gtf.gz and fa.gz,
# pass the `--readFilesCommand zcat` flag.
# - We're using gzip compressed reference data (--readFilesCommand zcat), i.e.,
# .gtf.gz and fa.gz. If not, you can remove the `zcat` flag.
# Store created genome index in this location:.
GENOME_INDEX="${PROJECT_DIRECTORY}/step3/genome_index"
mkdir -p "${GENOME_INDEX}"
# Storage location reference data on Gearshift.
GTF_FILE="${REFERENCE_DATA}/Homo_sapiens.GRCh38.100.gtf"
FASTA_FILE="${REFERENCE_DATA}/Homo_sapiens.GRCh38.dna.primary_assembly.fa"
# Storage location reference data (in this case on calculon).
REFERENCE_DATA="/groups/umcg-griac/prm02/rawdata/reference/genome"
GTF_FILE="${REFERENCE_DATA}/Homo_sapiens.GRCh38.100.gtf.gz"
FASTA_FILE="${REFERENCE_DATA}/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz"
STAR \
--runThreadN 8 \
--runMode genomeGenerate \
--readFilesCommand zcat \
--sjdbOverhang 100 \
--genomeFastaFiles ${FASTA_FILE} \
--sjdbGTFfile ${GTF_FILE} \
@ -50,9 +40,9 @@ STAR \
# - We are assuming paired-end, gzip compressed (--readFilesCommand zcat) FastQ
# files.
# The compressed, paired-end, FastQ's after trimming (step 2).
R1="${PROJECT_DIRECTORY}/step2/sample1_R1_paired.fastq.gz"
R2="${PROJECT_DIRECTORY}/step2/sample1_R2_paired.fastq.gz"
# THe compressed paired-end FastQ's that we are aligning.
R1="sample1_R1.fastq.gz"
R2="sample1_R2.fastq.gz"
STAR \
--runThreadN 8 \
@ -60,4 +50,4 @@ STAR \
--readFilesIn "${R1}" "${R2}" \
--outSAMtype BAM SortedByCoordinate \
--genomeDir ${GENOME_INDEX} \
--outFileNamePrefix "${ALIGNMENT_OUTPUT}/sample1_"
--outFileNamePrefix "${ALIGNMENT_OUTPUT}"

View File

@ -1,5 +0,0 @@
#!/bin/bash
module load multiqc
PROJECT_DIRECTORY="/groups/umcg-griac/tmp01/rawdata/$(whoami)/rnaseq"
multiqc "${PROJECT_DIRECTORY}"

View File

@ -1,28 +0,0 @@
#!/bin/bash
PROJECT_DIRECTORY="/groups/umcg-griac/tmp01/rawdata/$(whoami)/rnaseq"
COUNT_OUTPUT="${PROJECT_DIRECTORY}/step5"
mkdir -p "${COUNT_OUTPUT}"
# Storage location of annotation on Gearshift.
REFERENCE_DATA="/groups/umcg-griac/prm03/rawdata/reference/genome"
GTF_FILE="${REFERENCE_DATA}/Homo_sapiens.GRCh38.100.gtf"
# Where our alignment file was stored.
BAM="${PROJECT_DIRECTORY}/step3/alignment/sample1_Aligned.sortedByCoord.out.bam"
# Compute counts using htseq-count.
#
# N.B.:
# - If you are processing multiple files, consider using the `--nprocesses` flag
# to distribute computation of the files to different cores.
# - The BAM file must be position sorted. If you used STAR with the
# `SortedByCoordinate` option you should be okay. If not, sort your BAM file
# using `samtools sort`.
# - By default, strand aware library preparation is assumed. If not, specify the
# `--stranded` flag.
htseq-count \
--order pos \
-f bam \
${BAM} \
${GTF_FILE} \
> ${COUNT_OUTPUT}/counts.txt

View File

@ -18,7 +18,7 @@ do.scale = FALSE
# The analysis
# We use prcomp to calculate the PCAs. Afterwards you should plot the results.
# We ise prcomp to calculate the PCAs. Afterwards you should plot the results.
norm.expr.data <- expression.data %>%
tibble::column_to_rownames("Gene")
norm.expr.data <- norm.expr.data[rowSums(norm.expr.data) >= 10,] %>%
@ -37,8 +37,8 @@ norm.expr.data.pcs <- norm.expr.data %>%
)
# Write summary of PCAs to files
pcs.summary <- summary(norm.expr.data.pcs)
pcs.summary$importance %>%
pcs.summery <- summary(norm.expr.data.pcs)
pcs.summery$importance %>%
t() %>%
as.data.frame() %>%
tibble::rownames_to_column("PC.name") %>%
@ -46,7 +46,7 @@ pcs.summary$importance %>%
file.path(results.dir.pca, "importance.csv")
)
pcs.summary$x %>%
pcs.summery$x %>%
t() %>%
as.data.frame() %>%
tibble::rownames_to_column("ensembl.id") %>%
@ -54,7 +54,7 @@ pcs.summary$x %>%
file.path(results.dir.pca, "values.csv")
)
pcs.summary$rotation %>%
pcs.summery$rotation %>%
t() %>%
as.data.frame() %>%
tibble::rownames_to_column("sample.id") %>%
@ -63,15 +63,15 @@ pcs.summary$rotation %>%
)
data.frame(
rownames = names(pcs.summary$center),
center = pcs.summary$center,
scale = pcs.summary$scale
rownames = names(pcs.summery$center),
center = pcs.summery$center,
scale = pcs.summery$scale
) %>%
readr::write_csv(
file.path(results.dir.pca, "rest.csv")
)
# Not saved: pcs.summary$sdev,
# Not saved: pcs.summery$sdev,
# Next thing to do:

View File

@ -1,61 +0,0 @@
#!/usr/bin/perl -w
use strict;
use Parallel::ForkManager;
# this script creats one file with UMI unique reads and one with UMI duplicated reads
# as input you need aligned sorted by coordinate bam file
my @torun = ();
foreach my $file ( <*Aligned.sortedByCoord.out.bam> ) {
push @torun, $file;
}
my $pm = Parallel::ForkManager->new( 12 );
foreach my $file ( @torun ) {
my $sample = $file;
$sample =~ s/Aligned\.sortedByCoord\.out\.bam$//;
next if -s $sample.'_uniq.bam';
warn "Parsing $sample\n";
$pm->start and next;
my %seen = ();
my %duplicates = ();
my ( $uniqs, $dups ) = ( 0, 0 );
open F, 'samtools view -h '.$file.' |';
open F1, '| samtools view -bS - >'.$sample.'_uniq.bam';
open F2, '| samtools view -bS - >'.$sample.'_dups.bam';
while ( <F> ) {
if ( m/^\@/ ) {
print F1;
print F2;
next;
}
my ( $id, $flag, $chr, $pos, $mapq, $cigar, $chr2, $pos2, $tlen ) = split /\t/;
next if $flag & 256 or $flag & 512 or $flag & 1024; #skip if the read is not primary alignment/read fails platform/vendor quality checks/read is PCR or optical duplicate
# foreach ( 256, 512, 1024 ) { $flag-=$_ if $flag&$_ }
my ( $bc ) = $id =~ m/\:([GATCN\d]+)$/; #extract UMI barcode
my $uniq = join( ':', $chr, $pos, $flag, $tlen, $bc );
my $pos_ = $pos-1;
while ( $cigar =~ m/(\d+)([SHMDIN=])/g ) {
$pos_+=$1 if $2 eq 'M' or $2 eq '=' or $2 eq 'D' or $2 eq 'N'; # find position for minus strand
}
my $uniq2 = join( ':', $chr, $pos_, $flag, $tlen, $bc );
if ( exists($duplicates{$id}) or # already marked as duplicate
( not($flag&16) and ++$seen{ $uniq } > 1 ) or # plus strand
( $flag&16 and ++$seen{ $uniq2 } > 1 ) #minus strand
) {
print F2;
$dups++;
$duplicates{$id} = 1;
}
else {
print F1;
$uniqs++;
}
}
close F;
close F1;
close F2;
warn "Unique: $uniqs (", 100*$uniqs/($uniqs+$dups), ")\n";
system( 'samtools', 'index', $sample.'_uniq.bam' );
# last;
$pm->finish;
}
$pm->wait_all_children;

0
rnaseq/umi/snippet.pl Normal file
View File