Compare commits

..

14 Commits

6 changed files with 248 additions and 90 deletions

2
.Rbuildignore Normal file
View File

@ -0,0 +1,2 @@
^.*\.Rproj$
^\.Rproj\.user$

4
.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
.Rproj.user
.Rhistory
.RData
.Ruserdata

BIN
Images/Counts_removed.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

BIN
Images/DE_affect_chance.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

View File

@ -7,11 +7,15 @@
# empty droplets and removing per gene the highest value found in the ambient
# RNA if it's found to contaminate more than a certain threshold of droplets
###############################################################################
# This file contains base functions
# TODO
#
###############################################################################
library(Matrix)
library(Seurat)
library(qlcMatrix)
library(pheatmap)
library(ggplot2)
library(gridExtra)
###############################################################################
@ -22,13 +26,21 @@ library(qlcMatrix)
# p: the where in 'i' and 'x' a new column starts
# Dimnames: The names of the rows and columns
remove.background = function(geneCellMatrix, ambientRNAprofile){
for(gene in names(ambientProfile[ambientProfile > 0])){
# do some input checks first
if(!("dgCMatrix" %in% class(geneCellMatrix))){
cat("geneCellMatrix should be a sparse matrix of the \"dgCMatrix\" class")
stop()
}
# Here is the actual functionality
for(gene in names(ambientRNAprofile[ambientRNAprofile > 0])){
# Determine the locations where the gene is not zero, therefore referenced in i
iLocs = which(geneCellMatrix@Dimnames[[1]] == gene)
# Determine the location of the actual values,
xLocs = which(geneCellMatrix@i == iLocs-1) # -1 because of 0 and 1 based counting systems
# Remove the contaminating RNA
geneCellMatrix@x[xLocs] = geneCellMatrix@x[xLocs] - ambientProfile[gene]
geneCellMatrix@x[xLocs] = geneCellMatrix@x[xLocs] - ambientRNAprofile[gene]
}
# correct for instances where the expression was corrected to below zero
geneCellMatrix@x[geneCellMatrix@x < 0] = 0
@ -37,17 +49,16 @@ remove.background = function(geneCellMatrix, ambientRNAprofile){
}
##############
determine.background.to.remove = function(fullCellMatrix, cellMatrix, emptyDropletCutoff, contaminationChanceCutoff){
determine.background.to.remove = function(fullCellMatrix, emptyDropletCutoff, contaminationChanceCutoff){
# determines the highest expression value found for every gene in the droplets that we're sure don't contain cells
backGroundMax = as.vector(rowMax(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyDropletCutoff]))
backGroundMax = as.vector(qlcMatrix::rowMax(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyDropletCutoff]))
names(backGroundMax) = rownames(fullCellMatrix)
nCell = ncol(cellMatrix)
# droplets that are empty but not unused barcodes, unused barcodes have zero reads assigned to them.
nEmpty = table((Matrix::colSums(fullCellMatrix) < emptyDropletCutoff) &(Matrix::colSums(fullCellMatrix) > 0))[2]
# rowSum on a logical statement returns the number of TRUE occurences
occurences = rowSums(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyDropletCutoff] !=0)
occurences = Matrix::rowSums(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyDropletCutoff] !=0)
#probability of a background read of a gene ending up in a cell
probabiltyCellContaminationPerGene = occurences / nEmpty
@ -71,36 +82,127 @@ read.full.matrix = function(fullFolderLocation){
return(fullMatrix)
}
##############
write.corrected.matrix = function(correctedMatrix, folderLocation, correctedSignal){
dir.create(folderLocation)
writeMM(obj = correctedMatrix, file=paste(folderLocation, "/matrix.mtx", sep = ""))
# save genes and cells names
write(x = rownames(correctedMatrix), file = paste(folderLocation, "/genes.tsv", sep = ""))
write(x = colnames(correctedMatrix), file = paste(folderLocation, "/barcodes.tsv", sep = ""))
correctedSignal = correctedSignal[correctedSignal > 0]
write.table(list(correctedSignal), file = paste(folderLocation, "/genesCorrectedFor.csv", sep = ""), row.names = TRUE, col.names = FALSE)
###############################################################################
getExpressionThreshold = function(gene, expMat, percentile){
orderedExpression = expMat[gene, order(expMat[gene,], decreasing = TRUE)]
CS = cumsum(orderedExpression)
return(orderedExpression[which(CS/max(CS) > percentile)[1]])
}
###############################################################################
celltypeSpecificityScore = function(gene, expMat){
CS = cumsum(expMat[gene, order(expMat[gene,], decreasing = TRUE)])
return((sum(CS/max(CS))/ncol(expMat)) )
}
###############################################################################
describe.correction.effect = function (allExpression, cellExpression, startPos, stopPos, byLength, contaminationChanceCutoff){
# Make somewhere to store all the data that needs to be returned to the user
ambientScoreProfileOverview = data.frame(row.names = rownames(cellExpression))
# do a quick first run to see which genes get corrected at the highest setting
ambientProfile = determine.background.to.remove(allExpression, cellExpression, stopPos, contaminationChanceCutoff)
genelist = names(ambientProfile[ambientProfile > 0])
print(paste0("Calculating cell expression score for ", length(genelist), " genes"))
ctsScores = vector(mode = "numeric", length = nrow(cellExpression))
names(ctsScores) = rownames(cellExpression)
for(gene in genelist){
ctsScores[gene] = celltypeSpecificityScore(gene, cellExpression)
}
# loop over every threshold to test
# Starts at the highest value so
for(emptyDropletCutoff in seq(from = startPos, to = stopPos, by = byLength)){
ambientProfile = determine.background.to.remove(allExpression, cellExpression, emptyDropletCutoff, contaminationChanceCutoff)
print(paste0("Profiling at cutoff ", emptyDropletCutoff))
ambientScoreProfile = data.frame(ambientProfile, ctsScores)
#ambientScoreProfile = ambientScoreProfile[ambientScoreProfile$ctsScores > 0.85, ]
ambientScoreProfile$stillOverAmbient = 0
ambientScoreProfile$belowCellexpression = 0
genesToCheck = names(ambientProfile[ambientProfile > 0])
if(exists("overAmbientGenes")){
genesToCheck = overAmbientGenes
}
print(paste0("Calculating profiles for ", length(genesToCheck), " genes"))
for(gene in genesToCheck){
expThresh = getExpressionThreshold(gene, cellExpression, 0.95)
if(emptyDropletCutoff == startPos){
ambientScoreProfile[gene, "belowCellexpression"] = table(cellExpression[gene,] > 0 & cellExpression[gene,] < expThresh)["TRUE"]
}
ambientScoreProfile[gene, "stillOverAmbient"] = table(cellExpression[gene,] > ambientScoreProfile[gene, "ambientProfile"] & cellExpression[gene,] < expThresh)["TRUE"]
}
ambientScoreProfile[is.na(ambientScoreProfile)] = 0
ambientScoreProfile$contaminationChance = ambientScoreProfile$stillOverAmbient / ambientScoreProfile$belowCellexpression
ambientScoreProfile[is.na(ambientScoreProfile)] = 0
# Genes that have already been completely removed don't need to be checked at higher resolution
overAmbientGenes = rownames(ambientScoreProfile[ambientScoreProfile$stillOverAmbient > 0,])
ambientScoreProfile[genelist,"AmbientCorrection"]
ambientScoreProfileOverview[names(ctsScores), "ctsScores"] = ctsScores
if(emptyDropletCutoff == startPos){
ambientScoreProfileOverview[rownames(ambientScoreProfile), "belowCellexpression"] = ambientScoreProfile$belowCellexpression
}
ambientScoreProfileOverview[rownames(ambientScoreProfile), paste0("stillOverAmbient", as.character(emptyDropletCutoff))] = ambientScoreProfile$stillOverAmbient
ambientScoreProfileOverview[rownames(ambientScoreProfile), paste0("AmbientCorrection", as.character(emptyDropletCutoff))] = ambientScoreProfile$ambientProfile
}
ambientScoreProfileOverview = ambientScoreProfileOverview[!is.na(ambientScoreProfileOverview$ctsScores),]
ambientScoreProfileOverview[is.na(ambientScoreProfileOverview)] = 0
ambientScoreProfileOverview[,paste0("Threshold_", seq(from = startPos, to = stopPos, by = byLength))] = ambientScoreProfileOverview[,paste0("stillOverAmbient", as.character(seq(from = startPos, to = stopPos, by = byLength)))] / ambientScoreProfileOverview$belowCellexpression
ambientScoreProfileOverview[is.na(ambientScoreProfileOverview)] = 0
ambientScoreProfileOverview[,paste0("contaminationChance", as.character(seq(from = startPos, to = stopPos, by = byLength)))] = ambientScoreProfileOverview[,paste0("stillOverAmbient", as.character(seq(from = startPos, to = stopPos, by = byLength)))] / ambientScoreProfileOverview$belowCellexpression
return(ambientScoreProfileOverview)
}
##############
# Turns out that cellranger output looks different from WriteMM output and Read10X can't read the latter
# TODO
# Commented out until I find a fix
# write.corrected.matrix = function(correctedMatrix, folderLocation, correctedSignal){
# dir.create(folderLocation)
#
# writeMM(obj = correctedMatrix, file=paste(folderLocation, "/matrix.mtx", sep = ""))
#
# # save genes and cells names
# write(x = rownames(correctedMatrix), file = paste(folderLocation, "/genes.tsv", sep = ""))
# write(x = colnames(correctedMatrix), file = paste(folderLocation, "/barcodes.tsv", sep = ""))
#
# correctedSignal = correctedSignal[correctedSignal > 0]
# write.table(list(correctedSignal), file = paste(folderLocation, "/genesCorrectedFor.csv", sep = ""), row.names = TRUE, col.names = FALSE)
#
# }
# describe the number of genes identified in the background
# and the number of genes failing the contaminiation chance threshold
# and the number of genes failing the contamination chance threshold
#
describe.ambient.RNA.sequence = function(fullCellMatrix, start, stop, by, contaminationChanceCutoff){
cutoffValue = seq(start, stop, by)
genesInBackground = vector(mode = "numeric", length = length(seq(start, stop, by)))
genesContaminating = vector(mode = "numeric", length = length(seq(start, stop, by)))
nEmptyDroplets = vector(mode = "numeric", length = length(seq(start, stop, by)))
ambientDescriptions = data.frame(nEmptyDroplets, genesInBackground, genesContaminating)
ambientDescriptions = data.frame(nEmptyDroplets, genesInBackground, genesContaminating, cutoffValue)
rownames(ambientDescriptions) = seq(start, stop, by)
for(emptyCutoff in seq(start, stop, by)){
nEmpty = table((Matrix::colSums(fullCellMatrix) < emptyCutoff) &(Matrix::colSums(fullCellMatrix) > 0))[2]
occurences = rowSums(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyCutoff] !=0)
occurences = Matrix::rowSums(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyCutoff] !=0)
#probability of a background read of a gene ending up in a cell
probabiltyCellContaminationPerGene = occurences / nEmpty
@ -113,23 +215,39 @@ describe.ambient.RNA.sequence = function(fullCellMatrix, start, stop, by, contam
}
plot.correction.effect.chance = function(correctionProfile){
pheatmap(correctionProfile[correctionProfile[,3] > 0, colnames(correctionProfile)[grep("contaminationChance", colnames(correctionProfile))]],
cluster_cols = FALSE,
treeheight_row = 0,
main = "Chance of affecting DE analyses")
}
plot.correction.effect.removal = function(correctionProfile){
pheatmap(correctionProfile[(correctionProfile[,3] > 0) ,colnames(correctionProfile)[grep("AmbientCorrection", colnames(correctionProfile))]],
cluster_cols = FALSE, treeheight_row = 0,
main = "Counts removed from each cell")
}
plot.ambient.profile = function(ambientProfile){
par(mfrow = c(3,1))
plot(as.numeric(rownames(ambientProfile)), ambientProfile[,1],
main = "Total number of empty droplets at cutoffs",
xlab = "empty droplet UMI cutoff",
ylab = "Number of empty droplets")
plot(as.numeric(rownames(ambientProfile)), ambientProfile[,2],
main = "Number of genes in ambient RNA",
xlab = "empty droplet UMI cutoff",
ylab = "Genes in empty droplets")
p1 = ggplot(ambientProfile, aes(x=cutoffValue, y=genesInBackground)) + geom_point()
plot(as.numeric(rownames(ambientProfile)), ambientProfile[,3],
main = "number of genes to correct",
xlab = "empty droplet UMI cutoff",
ylab = "Genes identified as contamination")
p2= ggplot(ambientProfile, aes(x=cutoffValue, y=genesContaminating)) + geom_point()
p3 = ggplot(ambientProfile, aes(x=cutoffValue, y=nEmptyDroplets)) + geom_point()
grid.arrange(p1, p2, p3, nrow = 3)
}
# I noticed that the number of genes removed tends to even out over time
# Test whether the point where this first happens is a good empty cutoff point
recommend.empty.cutoff = function(ambientProfile){
highestNumberOfGenes = max(ambientProfile[,3])
firstOccurence = match(highestNumberOfGenes, ambientProfile[,3])
return(as.numeric(rownames(ambientProfile[firstOccurence,])))
}
@ -141,5 +259,3 @@ plot.ambient.profile = function(ambientProfile){

138
README.md
View File

@ -2,21 +2,10 @@
FastCAR is an R package to remove ambient RNA from cells in droplet based single cell RNA sequencing data.
## Getting Started
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.
### Installation
### Prerequisites
What things you need to install the software and how to install them
```
Give examples
```
### Installing
FastCAR can be install from git with the following command.
FastCAR can be installed from git with the following command.
```
devtools::install_git("https://git.web.rug.nl/P278949/FastCAR")
@ -29,76 +18,123 @@ First load the library and dependencies.
library(Matrix)
library(Seurat)
library(qlcMatrix)
library(FastCAR)
library(pheatmap)
library(ggplot2)
library(gridExtra)
```
Specify the locations of the expression matrices
```
```
cellExpressionFolder = c("Cellranger_output/sample1/filtered_feature_bc_matrix/")
fullMatrixFolder = c("Cellranger_output/sample1/raw_feature_bc_matrix/")
```
Load both the cell matrix and the full matrix
```
# This folder will contain the corrected cell matrix
correctedMatrixFolder = c("Cellranger_output/sample1/corrected_feature_bc_matrix")
cellMatrix = read.cell.matrix(cellExpressionFolder)
fullMatrix = read.full.matrix(fullMatrixFolder)
```
The following functions give an idea of the effect that different settings have on the ambient RNA profile.
These are optional as they do take a few minutes and the default settings work fine
Plotting the number of empty droplets, the number of genes identified in the ambient RNA, and the number of genes that will be corrected for at different UMI cutoffs,
```
The following functions give an idea of the effect that different settings have on the ambient RNA profile
```
ambProfile = describe.ambient.RNA.sequence(fullCellMatrix = fullMatrix, start = 10, stop = 500, by = 10, contaminationChanceCutoff = 0.05)
ambProfile = describe.ambient.RNA.sequence(fullCellMatrix = fullMatrix,
start = 10,
stop = 500,
by = 10,
contaminationChanceCutoff = 0.05)
plot.ambient.profile(ambProfile)
```
![picture](Images/Example_profile.png)
The actual effect on the chances of genes affecting your DE analyses can be determined and visualized with the following function
```
![picture](https://git.web.rug.nl/P278949/FastCAR/src/branch/master/Images/Example_profile)
Set
correctionEffectProfile = describe.correction.effect(allExpression, cellExpression, 50, 500, 10, 0.05)
plot.correction.effect.chance(correctionEffectProfile)
```
emptyDropletCutoff = 100
contaminationChanceCutoff = 0.05
![picture](Images/DE_affect_chance.png)
How many reads will be removed of these genes can be visualized from the same profile
```
plot.correction.effect.removal(correctionEffectProfile)
```
![picture](Images/Counts_removed.png)
Set the empty droplet cutoff and the contamination chance cutoff
The empty droplet cutoff is the number of UMIs a droplet can contain at the most to be considered empty.
100 works fine but we tested this method in only one tissue. For other tissues these settings may need to be changed.
Increasing this number also increases the highest possible value of expression of a given gene.
As the correction will remove this value from every cell it is adviced not to set this too high and thereby overcorrect the expression in lowly expressing cells.
The contamination chance cutoff is the allowed probability of a gene contaminating a cell.
As we developed FastCAR specifically for differential expression analyses between groups we suggest setting this such that not enough cells could be contaminated to affect this.
In a cluster of a thousand cells divided into two groups there would be 2-3 cells per group with ambient RNA contamination of any given gene.
Such low cell numbers are disregarded for differential expression analyses.
There is an experimental function that gives a recommendation based on the ambient profiling results.
This selects the first instance of the maximum number of genes being corrected for.
I have no idea yet if this is actually a good idea.
```
emptyDropletCutoff = recommend.empty.cutoff(ambProfile)
```
```
emptyDropletCutoff = 150
contaminationChanceCutoff = 0.005
```
Determine the ambient RNA profile and remove the ambient RNA from each cell
```
ambientProfile = determine.background.to.remove(fullMatrix, cellMatrix, emptyDropletCutoff, contaminationChanceCutoff)
cellMatrix = remove.background(cellMatrix, ambientProfile)
```
Finally write the corrected cell/gene matrix to a file, this matrix can be used in Seurat the same way as any other cell/gene matrix.
This corrected matrix can be used to to make a Seurat object
```
write.corrected.matrix(cellMatrix, correctedMatrixFolder, ambientProfile)
seuratObject = CreateSeuratObject(cellMatrix)
```
End with an example of getting some data out of the system or using it for a little demo
## Running the tests
## Authors
* **Marijn Berg** - *Initial work*
* **Marijn Berg** - m.berg@umcg.nl
## License
This project is licensed under the GPL-3 License - see the [LICENSE.md](LICENSE.md) file for details
## Changelog
### v0.1
First fully working version of the R package
### v0.2
Fixed function to write the corrected matrix to file.
Added readout of which genes will be corrected for and how many reads will be removed per cell
Added some input checks to functions
### v0.2
Fixed a bug that caused FastCAR to be incompatible with biobase libraries
Added better profiling to determine the effect of different settings on the corrections
Swapped base R plots for ggplot2 plots