2018-08-11 21:30:00 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
2020-07-08 14:48:06 +02:00
# https://github.com/msberends/AMR #
2018-08-11 21:30:00 +02:00
# #
# LICENCE #
2020-01-05 17:22:09 +01:00
# (c) 2018-2020 Berends MS, Luz CF et al. #
2018-08-11 21:30:00 +02:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
2020-01-05 17:22:09 +01:00
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2020-07-08 14:48:06 +02:00
# Visit our website for more info: https://msberends.github.io/AMR. #
2018-08-11 21:30:00 +02:00
# ==================================================================== #
2019-11-28 22:32:17 +01:00
#' AMR plots with `ggplot2`
2018-08-11 21:30:00 +02:00
#'
2020-07-08 14:48:06 +02:00
#' Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on [ggplot2][ggplot2::ggplot()] functions.
2020-01-05 17:22:09 +01:00
#' @inheritSection lifecycle Maturing lifecycle
2019-11-28 22:32:17 +01:00
#' @param data a [`data.frame`] with column(s) of class [`rsi`] (see [as.rsi()])
#' @param position position adjustment of bars, either `"fill"`, `"stack"` or `"dodge"`
#' @param x variable to show on x axis, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable
#' @param fill variable to categorise using the plots legend, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable
2018-10-22 12:32:59 +02:00
#' @param breaks numeric vector of positions
2019-11-28 22:32:17 +01:00
#' @param limits numeric vector of length two providing limits of the scale, use `NA` to refer to the existing minimum or maximum
#' @param facet variable to split plots by, either `"interpretation"` (default) or `"antibiotic"` or a grouping variable
2019-11-10 12:16:56 +01:00
#' @inheritParams proportion
2019-11-28 22:32:17 +01:00
#' @param nrow (when using `facet`) number of rows
#' @param colours a named vector with colours for the bars. The names must be one or more of: S, SI, I, IR, R or be `FALSE` to use default [ggplot2][[ggplot2::ggplot()] colours.
#' @param datalabels show datalabels using [labels_rsi_count()]
2018-09-16 22:11:17 +02:00
#' @param datalabels.size size of the datalabels
#' @param datalabels.colour colour of the datalabels
2019-05-31 20:25:57 +02:00
#' @param title text to show as title of the plot
#' @param subtitle text to show as subtitle of the plot
#' @param caption text to show as caption of the plot
#' @param x.title text to show as x axis description
#' @param y.title text to show as y axis description
2019-11-28 22:32:17 +01:00
#' @param ... other parameters passed on to [geom_rsi()]
#' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` parameter. See [count_df()].
2018-08-11 21:30:00 +02:00
#'
2019-11-28 22:32:17 +01:00
#' ## The functions
#' [geom_rsi()] will take any variable from the data that has an [`rsi`] class (created with [as.rsi()]) using [rsi_df()] and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
2018-08-11 21:30:00 +02:00
#'
2019-11-28 22:32:17 +01:00
#' [facet_rsi()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()].
2018-08-11 21:30:00 +02:00
#'
2020-07-08 14:48:06 +02:00
#' [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()].
2018-08-11 21:30:00 +02:00
#'
2020-07-08 14:48:06 +02:00
#' [scale_rsi_colours()] sets colours to the bars: pastel blue for S, pastel turquoise for I and pastel red for R, using [ggplot2::scale_fill_manual()].
2018-08-11 21:30:00 +02:00
#'
2019-11-28 22:32:17 +01:00
#' [theme_rsi()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction.
2018-08-11 21:30:00 +02:00
#'
2020-07-08 14:48:06 +02:00
#' [labels_rsi_count()] print datalabels on the bars with percentage and amount of isolates using [ggplot2::geom_text()].
2018-09-16 22:11:17 +02:00
#'
2019-11-28 22:32:17 +01:00
#' [ggplot_rsi()] is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (`%>%`). See Examples.
2018-08-11 21:30:00 +02:00
#' @rdname ggplot_rsi
#' @export
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
2018-08-11 21:30:00 +02:00
#' @examples
2020-05-16 21:40:50 +02:00
#' if (require("ggplot2") & require("dplyr")) {
2020-05-16 20:42:45 +02:00
#'
#' # get antimicrobial results for drugs against a UTI:
#' ggplot(example_isolates %>% select(AMX, NIT, FOS, TMP, CIP)) +
#' geom_rsi()
#'
#' # prettify the plot using some additional functions:
#' df <- example_isolates %>% select(AMX, NIT, FOS, TMP, CIP)
#' ggplot(df) +
#' geom_rsi() +
#' scale_y_percent() +
#' scale_rsi_colours() +
#' labels_rsi_count() +
#' theme_rsi()
#'
#' # or better yet, simplify this using the wrapper function - a single command:
#' example_isolates %>%
#' select(AMX, NIT, FOS, TMP, CIP) %>%
#' ggplot_rsi()
#'
#' # get only proportions and no counts:
#' example_isolates %>%
#' select(AMX, NIT, FOS, TMP, CIP) %>%
#' ggplot_rsi(datalabels = FALSE)
#'
#' # add other ggplot2 parameters as you like:
#' example_isolates %>%
#' select(AMX, NIT, FOS, TMP, CIP) %>%
#' ggplot_rsi(width = 0.5,
#' colour = "black",
#' size = 1,
#' linetype = 2,
#' alpha = 0.25)
#'
#' example_isolates %>%
#' select(AMX) %>%
#' ggplot_rsi(colours = c(SI = "yellow"))
#'
#' }
2019-11-03 22:41:29 +01:00
#'
#' \dontrun{
#'
2018-12-15 22:40:07 +01:00
#' # resistance of ciprofloxacine per age group
2019-08-27 16:45:42 +02:00
#' example_isolates %>%
2018-12-15 22:40:07 +01:00
#' mutate(first_isolate = first_isolate(.)) %>%
#' filter(first_isolate == TRUE,
#' mo == as.mo("E. coli")) %>%
#' # `age_group` is also a function of this package:
#' group_by(age_group = age_groups(age)) %>%
#' select(age_group,
2019-05-10 16:44:59 +02:00
#' CIP) %>%
2018-12-15 22:40:07 +01:00
#' ggplot_rsi(x = "age_group")
2019-11-03 22:41:29 +01:00
#'
2018-08-29 16:39:28 +02:00
#' # for colourblind mode, use divergent colours from the viridis package:
2019-08-27 16:45:42 +02:00
#' example_isolates %>%
2019-05-10 16:44:59 +02:00
#' select(AMX, NIT, FOS, TMP, CIP) %>%
2018-08-29 16:39:28 +02:00
#' ggplot_rsi() + scale_fill_viridis_d()
2019-05-31 20:25:57 +02:00
#' # a shorter version which also adjusts data label colours:
2019-08-27 16:45:42 +02:00
#' example_isolates %>%
2019-05-31 20:25:57 +02:00
#' select(AMX, NIT, FOS, TMP, CIP) %>%
#' ggplot_rsi(colours = FALSE)
2018-08-29 16:39:28 +02:00
#'
#'
2018-09-13 14:48:34 +02:00
#' # it also supports groups (don't forget to use the group var on `x` or `facet`):
2019-08-27 16:45:42 +02:00
#' example_isolates %>%
2019-05-10 16:44:59 +02:00
#' select(hospital_id, AMX, NIT, FOS, TMP, CIP) %>%
2018-08-13 16:42:37 +02:00
#' group_by(hospital_id) %>%
2019-05-31 20:25:57 +02:00
#' ggplot_rsi(x = "hospital_id",
2019-06-13 14:28:46 +02:00
#' facet = "antibiotic",
2019-05-31 20:25:57 +02:00
#' nrow = 1,
#' title = "AMR of Anti-UTI Drugs Per Hospital",
#' x.title = "Hospital",
#' datalabels = FALSE)
2018-08-13 16:42:37 +02:00
#' }
2018-08-11 21:30:00 +02:00
ggplot_rsi <- function ( data ,
2018-08-22 00:02:26 +02:00
position = NULL ,
2019-06-13 14:28:46 +02:00
x = " antibiotic" ,
fill = " interpretation" ,
2018-08-23 21:27:15 +02:00
# params = list(),
2018-08-13 16:42:37 +02:00
facet = NULL ,
2018-10-22 12:32:59 +02:00
breaks = seq ( 0 , 1 , 0.1 ) ,
2018-12-16 22:45:12 +01:00
limits = NULL ,
2019-05-10 16:44:59 +02:00
translate_ab = " name" ,
2019-05-13 10:10:16 +02:00
combine_SI = TRUE ,
combine_IR = FALSE ,
2019-05-10 16:44:59 +02:00
language = get_locale ( ) ,
2018-08-29 16:35:32 +02:00
nrow = NULL ,
2019-05-31 20:25:57 +02:00
colours = c ( S = " #61a8ff" ,
SI = " #61a8ff" ,
I = " #61f7ff" ,
IR = " #ff6961" ,
R = " #ff6961" ) ,
datalabels = TRUE ,
datalabels.size = 2.5 ,
datalabels.colour = " gray15" ,
title = NULL ,
subtitle = NULL ,
caption = NULL ,
2019-08-09 23:22:10 +02:00
x.title = " Antimicrobial" ,
y.title = " Proportion" ,
2018-08-13 16:42:37 +02:00
... ) {
2020-03-07 21:48:21 +01:00
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
2020-03-07 21:48:21 +01:00
2018-09-13 14:48:34 +02:00
x <- x [1 ]
facet <- facet [1 ]
2020-03-07 21:48:21 +01:00
2018-09-13 14:48:34 +02:00
# we work with aes_string later on
x_deparse <- deparse ( substitute ( x ) )
if ( x_deparse != " x" ) {
x <- x_deparse
}
if ( x %like% ' ".*"' ) {
x <- substr ( x , 2 , nchar ( x ) - 1 )
}
facet_deparse <- deparse ( substitute ( facet ) )
if ( facet_deparse != " facet" ) {
facet <- facet_deparse
}
if ( facet %like% ' ".*"' ) {
facet <- substr ( facet , 2 , nchar ( facet ) - 1 )
}
if ( facet %in% c ( " NULL" , " " ) ) {
facet <- NULL
}
2020-03-07 21:48:21 +01:00
2019-05-31 20:25:57 +02:00
if ( is.null ( position ) ) {
position <- " fill"
}
2020-03-07 21:48:21 +01:00
2018-08-11 21:30:00 +02:00
p <- ggplot2 :: ggplot ( data = data ) +
2019-05-13 10:10:16 +02:00
geom_rsi ( position = position , x = x , fill = fill , translate_ab = translate_ab ,
2019-06-27 11:57:45 +02:00
combine_SI = combine_SI , combine_IR = combine_IR , ... ) +
2018-08-11 21:30:00 +02:00
theme_rsi ( )
2020-03-07 21:48:21 +01:00
2019-06-13 14:28:46 +02:00
if ( fill == " interpretation" ) {
2018-08-12 22:34:03 +02:00
# set RSI colours
2019-05-31 20:25:57 +02:00
if ( isFALSE ( colours ) & missing ( datalabels.colour ) ) {
# set datalabel colour to middle gray
datalabels.colour <- " gray50"
}
p <- p + scale_rsi_colours ( colours = colours )
2018-09-16 22:11:17 +02:00
}
2020-03-07 21:48:21 +01:00
2019-06-27 11:57:45 +02:00
if ( identical ( position , " fill" ) ) {
2019-11-10 12:16:56 +01:00
# proportions, so use y scale with percentage
2018-12-16 22:45:12 +01:00
p <- p + scale_y_percent ( breaks = breaks , limits = limits )
2018-08-22 00:02:26 +02:00
}
2020-03-07 21:48:21 +01:00
2019-06-27 11:57:45 +02:00
if ( datalabels == TRUE ) {
2018-09-16 22:11:17 +02:00
p <- p + labels_rsi_count ( position = position ,
x = x ,
2019-05-31 20:25:57 +02:00
translate_ab = translate_ab ,
combine_SI = combine_SI ,
combine_IR = combine_IR ,
2018-09-16 22:11:17 +02:00
datalabels.size = datalabels.size ,
datalabels.colour = datalabels.colour )
}
2020-03-07 21:48:21 +01:00
2018-08-11 21:30:00 +02:00
if ( ! is.null ( facet ) ) {
2018-08-29 16:35:32 +02:00
p <- p + facet_rsi ( facet = facet , nrow = nrow )
2018-08-11 21:30:00 +02:00
}
2020-03-07 21:48:21 +01:00
2019-05-31 20:25:57 +02:00
p <- p + ggplot2 :: labs ( title = title ,
subtitle = subtitle ,
caption = caption ,
x = x.title ,
y = y.title )
2020-03-07 21:48:21 +01:00
2018-08-11 21:30:00 +02:00
p
}
#' @rdname ggplot_rsi
#' @export
2018-08-22 00:02:26 +02:00
geom_rsi <- function ( position = NULL ,
2019-06-13 14:28:46 +02:00
x = c ( " antibiotic" , " interpretation" ) ,
fill = " interpretation" ,
2019-05-10 16:44:59 +02:00
translate_ab = " name" ,
language = get_locale ( ) ,
2019-05-13 10:10:16 +02:00
combine_SI = TRUE ,
combine_IR = FALSE ,
2018-08-23 21:27:15 +02:00
... ) {
2020-03-07 21:48:21 +01:00
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
stop_if ( is.data.frame ( position ) , " `position` is invalid. Did you accidentally use '%>%' instead of '+'?" )
2020-03-07 21:48:21 +01:00
2019-06-13 14:28:46 +02:00
y <- " value"
2019-06-27 11:57:45 +02:00
if ( missing ( position ) | is.null ( position ) ) {
position <- " fill"
2018-08-22 00:02:26 +02:00
}
2020-03-07 21:48:21 +01:00
2019-05-31 20:25:57 +02:00
if ( identical ( position , " fill" ) ) {
position <- ggplot2 :: position_fill ( vjust = 0.5 , reverse = TRUE )
}
2020-03-07 21:48:21 +01:00
2018-08-11 21:30:00 +02:00
x <- x [1 ]
2020-03-07 21:48:21 +01:00
2018-09-13 14:48:34 +02:00
# we work with aes_string later on
x_deparse <- deparse ( substitute ( x ) )
if ( x_deparse != " x" ) {
x <- x_deparse
}
if ( x %like% ' ".*"' ) {
x <- substr ( x , 2 , nchar ( x ) - 1 )
}
2020-03-07 21:48:21 +01:00
2019-10-11 17:21:02 +02:00
if ( tolower ( x ) %in% tolower ( c ( " ab" , " abx" , " antibiotics" ) ) ) {
2019-06-13 14:28:46 +02:00
x <- " antibiotic"
2019-10-11 17:21:02 +02:00
} else if ( tolower ( x ) %in% tolower ( c ( " SIR" , " RSI" , " interpretations" , " result" ) ) ) {
2019-06-13 14:28:46 +02:00
x <- " interpretation"
2018-08-11 21:30:00 +02:00
}
2020-03-07 21:48:21 +01:00
2018-08-11 21:30:00 +02:00
ggplot2 :: layer ( geom = " bar" , stat = " identity" , position = position ,
2018-08-22 00:02:26 +02:00
mapping = ggplot2 :: aes_string ( x = x , y = y , fill = fill ) ,
2019-05-13 10:10:16 +02:00
params = list ( ... ) , data = function ( x ) {
2020-02-14 19:54:13 +01:00
rsi_df ( data = x ,
2020-03-07 21:48:21 +01:00
translate_ab = translate_ab ,
language = language ,
combine_SI = combine_SI ,
combine_IR = combine_IR )
2019-05-13 10:10:16 +02:00
} )
2020-03-07 21:48:21 +01:00
2018-08-11 21:30:00 +02:00
}
#' @rdname ggplot_rsi
#' @export
2019-06-13 14:28:46 +02:00
facet_rsi <- function ( facet = c ( " interpretation" , " antibiotic" ) , nrow = NULL ) {
2020-03-07 21:48:21 +01:00
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
2020-03-07 21:48:21 +01:00
2019-05-31 20:25:57 +02:00
facet <- facet [1 ]
2020-03-07 21:48:21 +01:00
2018-09-13 14:48:34 +02:00
# we work with aes_string later on
facet_deparse <- deparse ( substitute ( facet ) )
if ( facet_deparse != " facet" ) {
facet <- facet_deparse
}
if ( facet %like% ' ".*"' ) {
facet <- substr ( facet , 2 , nchar ( facet ) - 1 )
}
2020-03-07 21:48:21 +01:00
2019-10-11 17:21:02 +02:00
if ( tolower ( facet ) %in% tolower ( c ( " SIR" , " RSI" , " interpretations" , " result" ) ) ) {
2019-06-13 14:28:46 +02:00
facet <- " interpretation"
2019-10-11 17:21:02 +02:00
} else if ( tolower ( facet ) %in% tolower ( c ( " ab" , " abx" , " antibiotics" ) ) ) {
2019-06-13 14:28:46 +02:00
facet <- " antibiotic"
2018-08-11 21:30:00 +02:00
}
2020-03-07 21:48:21 +01:00
2018-08-29 16:35:32 +02:00
ggplot2 :: facet_wrap ( facets = facet , scales = " free_x" , nrow = nrow )
2018-08-11 21:30:00 +02:00
}
#' @rdname ggplot_rsi
#' @export
2018-12-16 22:45:12 +01:00
scale_y_percent <- function ( breaks = seq ( 0 , 1 , 0.1 ) , limits = NULL ) {
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
2020-03-07 21:48:21 +01:00
2019-01-02 23:24:07 +01:00
if ( all ( breaks [breaks != 0 ] > 1 ) ) {
breaks <- breaks / 100
}
2018-10-22 12:32:59 +02:00
ggplot2 :: scale_y_continuous ( breaks = breaks ,
2019-09-30 16:45:36 +02:00
labels = percentage ( breaks ) ,
2018-12-16 22:45:12 +01:00
limits = limits )
2018-08-11 21:30:00 +02:00
}
#' @rdname ggplot_rsi
#' @export
2019-05-31 20:25:57 +02:00
scale_rsi_colours <- function ( colours = c ( S = " #61a8ff" ,
SI = " #61a8ff" ,
I = " #61f7ff" ,
IR = " #ff6961" ,
R = " #ff6961" ) ) {
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
2019-10-11 17:21:02 +02:00
# previous colour: palette = "RdYlGn"
# previous colours: values = c("#b22222", "#ae9c20", "#7cfc00")
2020-03-07 21:48:21 +01:00
2019-05-31 20:25:57 +02:00
if ( ! identical ( colours , FALSE ) ) {
original_cols <- c ( S = " #61a8ff" ,
SI = " #61a8ff" ,
I = " #61f7ff" ,
IR = " #ff6961" ,
R = " #ff6961" )
colours <- replace ( original_cols , names ( colours ) , colours )
ggplot2 :: scale_fill_manual ( values = colours )
}
2018-08-11 21:30:00 +02:00
}
#' @rdname ggplot_rsi
#' @export
theme_rsi <- function ( ) {
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
2019-05-31 20:25:57 +02:00
ggplot2 :: theme_minimal ( base_size = 10 ) +
2018-08-22 00:02:26 +02:00
ggplot2 :: theme ( panel.grid.major.x = ggplot2 :: element_blank ( ) ,
panel.grid.minor = ggplot2 :: element_blank ( ) ,
2019-05-31 20:25:57 +02:00
panel.grid.major.y = ggplot2 :: element_line ( colour = " grey75" ) ,
# center title and subtitle
plot.title = ggplot2 :: element_text ( hjust = 0.5 ) ,
plot.subtitle = ggplot2 :: element_text ( hjust = 0.5 ) )
2018-08-11 21:30:00 +02:00
}
2018-09-16 22:11:17 +02:00
#' @rdname ggplot_rsi
#' @export
labels_rsi_count <- function ( position = NULL ,
2019-06-13 14:28:46 +02:00
x = " antibiotic" ,
2019-05-31 20:25:57 +02:00
translate_ab = " name" ,
combine_SI = TRUE ,
combine_IR = FALSE ,
2018-09-16 22:11:17 +02:00
datalabels.size = 3 ,
2019-05-31 20:25:57 +02:00
datalabels.colour = " gray15" ) {
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
2018-09-16 22:11:17 +02:00
if ( is.null ( position ) ) {
position <- " fill"
}
2019-05-30 08:51:38 +02:00
if ( identical ( position , " fill" ) ) {
position <- ggplot2 :: position_fill ( vjust = 0.5 , reverse = TRUE )
2018-09-16 22:11:17 +02:00
}
2019-05-31 20:25:57 +02:00
x_name <- x
2018-09-16 22:11:17 +02:00
ggplot2 :: geom_text ( mapping = ggplot2 :: aes_string ( label = " lbl" ,
x = x ,
2019-06-13 14:28:46 +02:00
y = " value" ) ,
2018-09-16 22:11:17 +02:00
position = position ,
inherit.aes = FALSE ,
size = datalabels.size ,
2019-05-31 20:25:57 +02:00
colour = datalabels.colour ,
lineheight = 0.75 ,
data = function ( x ) {
2020-05-16 13:05:47 +02:00
transformed <- rsi_df ( data = x ,
2020-07-13 09:17:24 +02:00
translate_ab = translate_ab ,
combine_SI = combine_SI ,
combine_IR = combine_IR )
2020-05-16 13:05:47 +02:00
transformed $ gr <- transformed [ , x_name , drop = TRUE ]
transformed %>%
group_by ( gr ) %>%
mutate ( lbl = paste0 ( " n=" , isolates ) ) %>%
ungroup ( ) %>%
select ( - gr )
2019-05-31 20:25:57 +02:00
} )
2018-09-16 22:11:17 +02:00
}