1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-24 23:44:35 +01:00

add labels_rsi_count

This commit is contained in:
dr. M.S. (Matthijs) Berends 2018-09-16 22:11:17 +02:00
parent b792a2754e
commit db14781593
16 changed files with 110 additions and 29 deletions

View File

@ -1,6 +1,6 @@
Package: AMR
Version: 0.3.0.9007
Date: 2018-09-08
Version: 0.3.0.9008
Date: 2018-09-16
Title: Antimicrobial Resistance Analysis
Authors@R: c(
person(

View File

@ -87,6 +87,7 @@ export(is.rsi.eligible)
export(key_antibiotics)
export(key_antibiotics_equal)
export(kurtosis)
export(labels_rsi_count)
export(left_join_microorganisms)
export(like)
export(mo_aerobic)

View File

@ -25,6 +25,7 @@
* Column names inputs of `EUCAST_rules`, `first_isolate` and `key_antibiotics`
* Column names of datasets `microorganisms` and `septic_patients`
* All old syntaxes will still work with this version, but will throw warnings
* Function `labels_rsi_count` to print datalabels on a RSI `ggplot2` model
* Functions `as.atc` and `is.atc` to transform/look up antibiotic ATC codes as defined by the WHO. The existing function `guess_atc` is now an alias of `as.atc`.
* Aliases for existing function `mo_property`: `mo_family`, `mo_genus`, `mo_species`, `mo_subspecies`, `mo_fullname`, `mo_shortname`, `mo_aerobic`, `mo_type` and `mo_gramstain`. They also come with support for German, Dutch, French, Italian, Spanish and Portuguese, and it defaults to the systems locale:
```r
@ -70,6 +71,7 @@
```
* Edited `ggplot_rsi` and `geom_rsi` so they can cope with `count_df`. The new `fun` parameter has value `portion_df` at default, but can be set to `count_df`.
* Fix for `ggplot_rsi` when the `ggplot2` package was not loaded
* Added datalabels function `labels_rsi_count` to `ggplot_rsi`
* Added possibility to set any parameter to `geom_rsi` (and `ggplot_rsi`) so you can set your own preferences
* Fix for joins, where predefined suffices would not be honoured
* Added parameter `quote` to the `freq` function

View File

@ -36,7 +36,7 @@
#' ab_umcg("amcl") # AMCL
ab_property <- function(x, property = 'official') {
property <- property[1]
if (!property %in% colnames(antibiotics)) {
if (!property %in% colnames(AMR::antibiotics)) {
stop("invalid property: ", property, " - use a column name of the `antibiotics` data set")
}
if (!is.atc(x)) {

View File

@ -146,6 +146,10 @@ count_S <- function(...) {
count_df <- function(data,
translate_ab = getOption("get_antibiotic_names", "official")) {
if (!"data.frame" %in% class(data)) {
stop("`count_df` must be called on a data.frame")
}
if (data %>% select_if(is.rsi) %>% ncol() == 0) {
stop("No columns with class 'rsi' found. See ?as.rsi.")
}
@ -177,7 +181,7 @@ count_df <- function(data,
res <- bind_rows(resS, resI, resR) %>%
mutate(Interpretation = factor(Interpretation, levels = c("R", "I", "S"), ordered = TRUE)) %>%
tidyr::gather(Antibiotic, Count, -Interpretation, -data.groups)
tidyr::gather(Antibiotic, Value, -Interpretation, -data.groups)
if (!translate_ab == FALSE) {
if (!tolower(translate_ab) %in% tolower(colnames(AMR::antibiotics))) {

View File

@ -20,13 +20,16 @@
#'
#' Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}} functions.
#' @param data a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}})
#' @param position position adjustment of bars, either \code{"fill"}, \code{"stack"} (default when \code{fun} is \code{\link{portion_df}}) or \code{"dodge"} (default when \code{fun} is \code{\link{count_df}})
#' @param position position adjustment of bars, either \code{"fill"} (default when \code{fun} is \code{\link{count_df}}), \code{"stack"} (default when \code{fun} is \code{\link{portion_df}}) or \code{"dodge"}
#' @param x variable to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable
#' @param fill variable to categorise using the plots legend, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable
#' @param facet variable to split plots by, either \code{"Interpretation"} (default) or \code{"Antibiotic"} or a grouping variable
#' @param translate_ab a column name of the \code{\link{antibiotics}} data set to translate the antibiotic abbreviations into, using \code{\link{abname}}. Default behaviour is to translate to official names according to the WHO. Use \code{translate_ab = FALSE} to disable translation.
#' @param fun function to transform \code{data}, either \code{\link{portion_df}} (default) or \code{\link{count_df}}
#' @param fun function to transform \code{data}, either \code{\link{count_df}} (default) or \code{\link{portion_df}}
#' @param nrow (when using \code{facet}) number of rows
#' @param datalabels show datalabels using \code{labels_rsi_count}, will at default only be shown when \code{fun = count_df}
#' @param datalabels.size size of the datalabels
#' @param datalabels.colour colour of the datalabels
#' @param ... other parameters passed on to \code{geom_rsi}
#' @details At default, the names of antibiotics will be shown on the plots using \code{\link{abname}}. This can be set with the option \code{get_antibiotic_names} (a logical value), so change it e.g. to \code{FALSE} with \code{options(get_antibiotic_names = FALSE)}.
#'
@ -35,12 +38,14 @@
#'
#' \code{facet_rsi} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2]{facet_wrap}}.
#'
#' \code{scale_y_percent} transforms the y axis to a 0 to 100\% range.
#' \code{scale_y_percent} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2]{scale_y_continuous}}.
#'
#' \code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R.
#' \code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R, using \code{\link[ggplot2]{scale_fill_brewer}}.
#'
#' \code{theme_rsi} is a \code{\link[ggplot2]{theme}} with minimal distraction.
#'
#' \code{labels_rsi_count} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2]{geom_text}}
#'
#' \code{ggplot_rsi} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\code{\%>\%}). See Examples.
#' @rdname ggplot_rsi
#' @export
@ -58,6 +63,7 @@
#' geom_rsi() +
#' scale_y_percent() +
#' scale_rsi_colours() +
#' labels_rsi_count() +
#' theme_rsi()
#'
#' # or better yet, simplify this using the wrapper function - a single command:
@ -131,8 +137,11 @@ ggplot_rsi <- function(data,
# params = list(),
facet = NULL,
translate_ab = "official",
fun = portion_df,
fun = count_df,
nrow = NULL,
datalabels = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15",
...) {
if (!"ggplot2" %in% rownames(installed.packages())) {
@ -174,11 +183,22 @@ ggplot_rsi <- function(data,
# set RSI colours
p <- p + scale_rsi_colours()
}
if (fun_name == "portion_df") {
if (is.null(position)) {
position <- "fill"
}
if (fun_name == "portion_df"
| (fun_name == "count_df" & position == "fill")) {
# portions, so use y scale with percentage
p <- p + scale_y_percent()
}
if (fun_name == "count_df" & datalabels == TRUE) {
p <- p + labels_rsi_count(position = position,
x = x,
datalabels.size = datalabels.size,
datalabels.colour = datalabels.colour)
}
if (!is.null(facet)) {
p <- p + facet_rsi(facet = facet, nrow = nrow)
}
@ -192,20 +212,19 @@ geom_rsi <- function(position = NULL,
x = c("Antibiotic", "Interpretation"),
fill = "Interpretation",
translate_ab = "official",
fun = portion_df,
fun = count_df,
...) {
fun_name <- deparse(substitute(fun))
if (!fun_name %in% c("portion_df", "count_df", "fun")) {
stop("`fun` must be portion_df or count_df")
}
y <- "Value"
if (identical(fun, count_df)) {
y <- "Count"
if (missing(position) | is.null(position)) {
position <- "dodge"
position <- "fill"
}
} else {
y <- "Percentage"
if (missing(position) | is.null(position)) {
position <- "stack"
}
@ -264,7 +283,6 @@ facet_rsi <- function(facet = c("Interpretation", "Antibiotic"), nrow = NULL) {
#' @export
scale_y_percent <- function() {
ggplot2::scale_y_continuous(breaks = seq(0, 1, 0.1),
limits = c(0, 1),
labels = percent(seq(0, 1, 0.1)))
}
@ -282,3 +300,35 @@ theme_rsi <- function() {
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major.y = ggplot2::element_line(colour = "grey75"))
}
#' @rdname ggplot_rsi
#' @export
labels_rsi_count <- function(position = NULL,
x = "Antibiotic",
datalabels.size = 3,
datalabels.colour = "grey15") {
if (is.null(position)) {
position <- "fill"
}
if (position == "fill") {
position <- ggplot2::position_fill(vjust = 0.5)
}
ggplot2::geom_text(mapping = ggplot2::aes_string(label = "lbl",
x = x,
y = "Value"),
position = position,
data = getlbls,
inherit.aes = FALSE,
size = datalabels.size,
colour = datalabels.colour)
}
#' @importFrom dplyr %>% group_by mutate
getlbls <- function(data) {
data %>%
count_df() %>%
group_by(Antibiotic) %>%
mutate(lbl = paste0(percent(Value / sum(Value, na.rm = TRUE), force_zero = TRUE),
" (n=", Value, ")")) %>%
mutate(lbl = ifelse(lbl == "0.0% (n=0)", "", lbl))
}

View File

@ -22,7 +22,6 @@ globalVariables(c(".",
"antibiotics",
"cnt",
"count",
"Count",
"cum_count",
"cum_percent",
"date_lab",
@ -37,6 +36,7 @@ globalVariables(c(".",
"key_ab",
"key_ab_lag",
"key_ab_other",
"lbl",
"median",
"mic",
"microorganisms",
@ -46,7 +46,6 @@ globalVariables(c(".",
"other_pat_or_mo",
"Pasted",
"patient_id",
"Percentage",
"prevalence",
"R",
"real_first_isolate",
@ -54,4 +53,5 @@ globalVariables(c(".",
"septic_patients",
"species",
"value",
"Value",
"y"))

View File

@ -187,7 +187,7 @@ mo_aerobic <- function(x) {
#' @export
mo_property <- function(x, property = 'fullname', Becker = FALSE, Lancefield = FALSE, language = NULL) {
property <- tolower(property[1])
if (!property %in% colnames(microorganisms)) {
if (!property %in% colnames(AMR::microorganisms)) {
stop("invalid property: ", property, " - use a column name of the `microorganisms` data set")
}
result1 <- as.mo(x = x, Becker = Becker, Lancefield = Lancefield) # this will give a warning if x cannot be coerced

View File

@ -203,6 +203,10 @@ portion_df <- function(data,
minimum = 30,
as_percent = FALSE) {
if (!"data.frame" %in% class(data)) {
stop("`portion_df` must be called on a data.frame")
}
if (data %>% select_if(is.rsi) %>% ncol() == 0) {
stop("No columns with class 'rsi' found. See ?as.rsi.")
}
@ -240,7 +244,7 @@ portion_df <- function(data,
res <- bind_rows(resS, resI, resR) %>%
mutate(Interpretation = factor(Interpretation, levels = c("R", "I", "S"), ordered = TRUE)) %>%
tidyr::gather(Antibiotic, Percentage, -Interpretation, -data.groups)
tidyr::gather(Antibiotic, Value, -Interpretation, -data.groups)
if (!translate_ab == FALSE) {
if (!tolower(translate_ab) %in% tolower(colnames(AMR::antibiotics))) {

View File

@ -161,7 +161,8 @@ Adjust it with any parameter you know from the `ggplot2` package:
```r
septic_patients %>%
select(amox, nitr, fosf, trim, cipr) %>%
ggplot_rsi(width = 0.5, colour = "black", size = 1, linetype = 2, alpha = 0.25)
ggplot_rsi(datalabels = FALSE,
width = 0.5, colour = "black", size = 1, linetype = 2, alpha = 0.25)
```
![example_3_rsi](man/figures/rsi_example3.png)
@ -174,7 +175,8 @@ septic_patients %>%
group_by(hospital_id) %>%
ggplot_rsi(x = "hospital_id",
facet = "Antibiotic",
nrow = 1) +
nrow = 1,
datalabels = FALSE) +
labs(title = "AMR of Anti-UTI Drugs Per Hospital",
x = "Hospital")
```

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.2 KiB

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 20 KiB

View File

@ -7,15 +7,17 @@
\alias{scale_y_percent}
\alias{scale_rsi_colours}
\alias{theme_rsi}
\alias{labels_rsi_count}
\title{AMR bar plots with \code{ggplot}}
\usage{
ggplot_rsi(data, position = NULL, x = "Antibiotic",
fill = "Interpretation", facet = NULL, translate_ab = "official",
fun = portion_df, nrow = NULL, ...)
fun = count_df, nrow = NULL, datalabels = TRUE,
datalabels.size = 3, datalabels.colour = "grey15", ...)
geom_rsi(position = NULL, x = c("Antibiotic", "Interpretation"),
fill = "Interpretation", translate_ab = "official",
fun = portion_df, ...)
fill = "Interpretation", translate_ab = "official", fun = count_df,
...)
facet_rsi(facet = c("Interpretation", "Antibiotic"), nrow = NULL)
@ -24,11 +26,14 @@ scale_y_percent()
scale_rsi_colours()
theme_rsi()
labels_rsi_count(position = NULL, x = "Antibiotic",
datalabels.size = 3, datalabels.colour = "grey15")
}
\arguments{
\item{data}{a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}})}
\item{position}{position adjustment of bars, either \code{"fill"}, \code{"stack"} (default when \code{fun} is \code{\link{portion_df}}) or \code{"dodge"} (default when \code{fun} is \code{\link{count_df}})}
\item{position}{position adjustment of bars, either \code{"fill"} (default when \code{fun} is \code{\link{count_df}}), \code{"stack"} (default when \code{fun} is \code{\link{portion_df}}) or \code{"dodge"}}
\item{x}{variable to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable}
@ -38,10 +43,16 @@ theme_rsi()
\item{translate_ab}{a column name of the \code{\link{antibiotics}} data set to translate the antibiotic abbreviations into, using \code{\link{abname}}. Default behaviour is to translate to official names according to the WHO. Use \code{translate_ab = FALSE} to disable translation.}
\item{fun}{function to transform \code{data}, either \code{\link{portion_df}} (default) or \code{\link{count_df}}}
\item{fun}{function to transform \code{data}, either \code{\link{count_df}} (default) or \code{\link{portion_df}}}
\item{nrow}{(when using \code{facet}) number of rows}
\item{datalabels}{show datalabels using \code{labels_rsi_count}, will at default only be shown when \code{fun = count_df}}
\item{datalabels.size}{size of the datalabels}
\item{datalabels.colour}{colour of the datalabels}
\item{...}{other parameters passed on to \code{geom_rsi}}
}
\description{
@ -55,12 +66,14 @@ At default, the names of antibiotics will be shown on the plots using \code{\lin
\code{facet_rsi} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2]{facet_wrap}}.
\code{scale_y_percent} transforms the y axis to a 0 to 100\% range.
\code{scale_y_percent} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2]{scale_y_continuous}}.
\code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R.
\code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R, using \code{\link[ggplot2]{scale_fill_brewer}}.
\code{theme_rsi} is a \code{\link[ggplot2]{theme}} with minimal distraction.
\code{labels_rsi_count} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2]{geom_text}}
\code{ggplot_rsi} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\code{\%>\%}). See Examples.
}
\examples{
@ -77,6 +90,7 @@ ggplot(df) +
geom_rsi() +
scale_y_percent() +
scale_rsi_colours() +
labels_rsi_count() +
theme_rsi()
# or better yet, simplify this using the wrapper function - a single command:

View File

@ -41,4 +41,6 @@ test_that("counts work", {
expect_error(count_S("test", minimum = "test"))
expect_error(count_S("test", as_percent = "test"))
expect_error(count_df(c("A", "B", "C")))
})

View File

@ -112,7 +112,7 @@ test_that("old rsi works", {
# portion_df
expect_equal(
septic_patients %>% select(amox) %>% portion_df() %>% pull(Percentage),
septic_patients %>% select(amox) %>% portion_df() %>% pull(Value),
c(septic_patients$amox %>% portion_S(),
septic_patients$amox %>% portion_I(),
septic_patients$amox %>% portion_R())
@ -165,4 +165,6 @@ test_that("prediction of rsi works", {
col_ab = "mero",
col_date = "date",
info = TRUE))
expect_error(portion_df(c("A", "B", "C")))
})