1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-15 01:21:40 +01:00
AMR/data-raw/reproduction_of_clinical_breakpoints.R

217 lines
9.9 KiB
R
Raw Normal View History

2021-12-12 11:36:58 +01:00
# ==================================================================== #
# TITLE #
2022-10-05 09:12:22 +02:00
# AMR: An R Package for Working with Antimicrobial Resistance Data #
2021-12-12 11:36:58 +01:00
# #
# SOURCE #
# https://github.com/msberends/AMR #
# #
2022-10-05 09:12:22 +02:00
# CITE AS #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# doi:10.18637/jss.v104.i03 #
# #
2022-12-27 15:16:15 +01:00
# Developed at the University of Groningen and the University Medical #
# Center Groningen in The Netherlands, in collaboration with many #
# colleagues from around the world, see our website. #
2021-12-12 11:36:58 +01:00
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
# ==================================================================== #
2021-12-13 10:18:28 +01:00
# This script runs in under a minute and renews all guidelines of CLSI and EUCAST!
2023-01-21 23:47:20 +01:00
# Run it with source("data-raw/reproduction_of_clinical_breakpoints.R")
2021-12-13 10:18:28 +01:00
2019-05-10 16:44:59 +02:00
library(dplyr)
2020-07-29 10:33:47 +02:00
library(readr)
library(tidyr)
2021-12-13 10:18:28 +01:00
library(AMR)
2022-10-22 22:00:15 +02:00
# Install the WHONET 2022 software on Windows (http://www.whonet.org/software.html),
# and copy the folder C:\WHONET\Resources to the data-raw/WHONET/ folder
2022-10-29 14:15:23 +02:00
# (for ASIARS-Net update, also copy C:\WHONET\Codes to the data-raw/WHONET/ folder)
2022-10-22 22:00:15 +02:00
# Load source data ----
2022-10-30 14:31:45 +01:00
whonet_organisms <- read_tsv("data-raw/WHONET/Resources/Organisms.txt", na = c("", "NA", "-"), show_col_types = FALSE) %>%
2022-10-22 22:00:15 +02:00
# remove old taxonomic names
2022-10-30 14:31:45 +01:00
filter(TAXONOMIC_STATUS == "C") %>%
transmute(ORGANISM_CODE = tolower(WHONET_ORG_CODE), ORGANISM) %>%
2022-10-22 22:00:15 +02:00
# what's wrong here? 'sau' is both S. areus and S. aureus sp. aureus
2022-10-30 14:31:45 +01:00
mutate(
ORGANISM = if_else(ORGANISM_CODE == "sau", "Staphylococcus aureus", ORGANISM),
ORGANISM = if_else(ORGANISM_CODE == "pam", "Pasteurella multocida", ORGANISM)
)
whonet_breakpoints <- read_tsv("data-raw/WHONET/Resources/Breakpoints.txt", na = c("", "NA", "-"), show_col_types = FALSE) %>%
2022-10-22 22:00:15 +02:00
filter(BREAKPOINT_TYPE == "Human", GUIDELINES %in% c("CLSI", "EUCAST"))
whonet_antibiotics <- read_tsv("data-raw/WHONET/Resources/Antibiotics.txt", na = c("", "NA", "-"), show_col_types = FALSE) %>%
arrange(WHONET_ABX_CODE) %>%
distinct(WHONET_ABX_CODE, .keep_all = TRUE)
# Transform data ----
2022-10-30 14:31:45 +01:00
whonet_organisms <- whonet_organisms %>%
bind_rows(data.frame(
ORGANISM_CODE = c("ebc", "cof"),
ORGANISM = c("Enterobacterales", "Campylobacter")
))
2022-10-22 22:00:15 +02:00
2022-10-30 14:31:45 +01:00
breakpoints <- whonet_breakpoints %>%
mutate(ORGANISM_CODE = tolower(ORGANISM_CODE)) %>%
2022-10-22 22:00:15 +02:00
left_join(whonet_organisms) %>%
filter(ORGANISM %unlike% "(^cdc |Gram.*variable|virus)")
# this ones lack a MO name, they will become "UNKNOWN":
2022-10-30 14:31:45 +01:00
breakpoints %>%
filter(is.na(ORGANISM)) %>%
pull(ORGANISM_CODE) %>%
unique()
2022-10-22 22:00:15 +02:00
# Generate new lookup table for microorganisms ----
new_mo_codes <- breakpoints %>%
2022-10-30 14:31:45 +01:00
distinct(ORGANISM_CODE, ORGANISM) %>%
mutate(ORGANISM = ORGANISM %>%
gsub("Issatchenkia orientalis", "Candida krusei", .) %>%
gsub(", nutritionally variant", "", .) %>%
gsub(", toxin-.*producing", "", .)) %>%
mutate(
mo = as.mo(ORGANISM, language = NULL, keep_synonyms = FALSE),
mo_name = mo_name(mo, language = NULL)
)
2022-10-22 22:00:15 +02:00
# Update microorganisms.codes with the latest WHONET codes ----
# these will be changed :
2022-10-30 14:31:45 +01:00
new_mo_codes %>%
mutate(code = toupper(ORGANISM_CODE)) %>%
rename(mo_new = mo) %>%
left_join(microorganisms.codes %>% rename(mo_old = mo)) %>%
filter(mo_old != mo_new)
2022-10-30 14:31:45 +01:00
microorganisms.codes <- microorganisms.codes %>%
filter(!code %in% toupper(new_mo_codes$ORGANISM_CODE)) %>%
bind_rows(new_mo_codes %>% transmute(code = toupper(ORGANISM_CODE), mo = mo) %>% filter(!is.na(mo))) %>%
arrange(code) %>%
2022-10-22 22:00:15 +02:00
as_tibble()
usethis::use_data(microorganisms.codes, overwrite = TRUE, compress = "xz", version = 2)
rm(microorganisms.codes)
devtools::load_all()
# update ASIARS-Net?
asiarsnet <- read_tsv("data-raw/WHONET/Codes/ASIARS_Net_Organisms_ForwardLookup.txt")
asiarsnet <- asiarsnet %>%
mutate(WHONET_Code = toupper(WHONET_Code)) %>%
2022-10-30 14:31:45 +01:00
left_join(whonet_organisms %>% mutate(WHONET_Code = toupper(ORGANISM_CODE))) %>%
mutate(
mo1 = as.mo(ORGANISM_CODE),
mo2 = as.mo(ORGANISM)
) %>%
mutate(mo = if_else(mo2 == "UNKNOWN" | is.na(mo2), mo1, mo2)) %>%
2022-10-22 22:00:15 +02:00
filter(!is.na(mo))
insert1 <- asiarsnet %>% transmute(code = WHONET_Code, mo)
insert2 <- asiarsnet %>% transmute(code = as.character(ASIARS_Net_Code), mo)
# these will be updated
2022-10-30 14:31:45 +01:00
bind_rows(insert1, insert2) %>%
rename(mo_new = mo) %>%
left_join(microorganisms.codes) %>%
filter(mo != mo_new)
microorganisms.codes <- microorganisms.codes %>%
filter(!code %in% c(insert1$code, insert2$code)) %>%
bind_rows(insert1, insert2) %>%
2022-10-22 22:00:15 +02:00
arrange(code)
# Create new breakpoint table ----
2022-10-30 14:31:45 +01:00
breakpoints_new <- breakpoints %>%
2022-10-22 22:00:15 +02:00
# only last 10 years
2022-10-30 14:31:45 +01:00
filter(YEAR > as.double(format(Sys.Date(), "%Y")) - 10) %>%
2022-10-22 22:00:15 +02:00
# "all" and "gen" (general) must become UNKNOWNs:
2022-10-30 14:31:45 +01:00
mutate(ORGANISM_CODE = if_else(ORGANISM_CODE %in% c("all", "gen"), "UNKNOWN", ORGANISM_CODE)) %>%
transmute(
guideline = paste(GUIDELINES, YEAR),
method = TEST_METHOD,
site = gsub("Urinary tract infection", "UTI", SITE_OF_INFECTION),
mo = as.mo(ORGANISM_CODE, keep_synonyms = FALSE),
rank_index = case_when(
mo_rank(mo) %like% "(infra|sub)" ~ 1,
mo_rank(mo) == "species" ~ 2,
mo_rank(mo) == "genus" ~ 3,
mo_rank(mo) == "family" ~ 4,
mo_rank(mo) == "order" ~ 5,
TRUE ~ 6
),
ab = as.ab(WHONET_ABX_CODE),
ref_tbl = REFERENCE_TABLE,
disk_dose = POTENCY,
breakpoint_S = S,
breakpoint_R = R,
uti = SITE_OF_INFECTION %like% "(UTI|urinary|urine)"
) %>%
2022-10-22 22:00:15 +02:00
# Greek symbols and EM dash symbols are not allowed by CRAN, so replace them with ASCII:
2022-10-30 14:31:45 +01:00
mutate(disk_dose = disk_dose %>%
gsub("μ", "u", ., fixed = TRUE) %>%
gsub("µ", "u", ., fixed = TRUE) %>% # this is another micro sign, although we cannot see it
gsub("", "-", ., fixed = TRUE)) %>%
2022-08-28 10:31:50 +02:00
arrange(desc(guideline), ab, mo, method) %>%
2022-10-30 14:31:45 +01:00
filter(!(is.na(breakpoint_S) & is.na(breakpoint_R)) & !is.na(mo) & !is.na(ab)) %>%
2022-10-22 22:00:15 +02:00
distinct(guideline, ab, mo, method, site, breakpoint_S, .keep_all = TRUE)
# clean disk zones and MICs
breakpoints_new[which(breakpoints_new$method == "DISK"), "breakpoint_S"] <- as.double(as.disk(breakpoints_new[which(breakpoints_new$method == "DISK"), "breakpoint_S", drop = TRUE]))
breakpoints_new[which(breakpoints_new$method == "DISK"), "breakpoint_R"] <- as.double(as.disk(breakpoints_new[which(breakpoints_new$method == "DISK"), "breakpoint_R", drop = TRUE]))
2021-12-13 11:57:34 +01:00
2022-10-22 22:00:15 +02:00
# WHONET has no >1024 but instead uses 1025, 513, etc, so as.mic() cannot be used to clean.
2022-10-30 14:31:45 +01:00
# instead, clean based on MIC factor levels
2022-10-22 22:00:15 +02:00
m <- unique(as.double(as.mic(levels(as.mic(1)))))
breakpoints_new[which(breakpoints_new$method == "MIC" &
2022-10-30 14:31:45 +01:00
is.na(breakpoints_new$breakpoint_S)), "breakpoint_S"] <- min(m)
2022-10-22 22:00:15 +02:00
breakpoints_new[which(breakpoints_new$method == "MIC" &
2022-10-30 14:31:45 +01:00
is.na(breakpoints_new$breakpoint_R)), "breakpoint_R"] <- max(m)
2022-10-22 22:00:15 +02:00
# raise these one higher valid MIC factor level:
breakpoints_new[which(breakpoints_new$breakpoint_R == 129), "breakpoint_R"] <- m[which(m == 128) + 1]
breakpoints_new[which(breakpoints_new$breakpoint_R == 257), "breakpoint_R"] <- m[which(m == 256) + 1]
breakpoints_new[which(breakpoints_new$breakpoint_R == 513), "breakpoint_R"] <- m[which(m == 512) + 1]
breakpoints_new[which(breakpoints_new$breakpoint_R == 1025), "breakpoint_R"] <- m[which(m == 1024) + 1]
2021-12-13 11:57:34 +01:00
2022-05-10 17:01:37 +02:00
# WHONET adds one log2 level to the R breakpoint for their software, e.g. in AMC in Enterobacterales:
# EUCAST 2021 guideline: S <= 8 and R > 8
# WHONET file: S <= 8 and R >= 16
2022-10-22 22:00:15 +02:00
breakpoints_new %>% filter(guideline == "EUCAST 2022", ab == "AMC", mo == "B_[ORD]_ENTRBCTR", method == "MIC")
2022-05-10 17:01:37 +02:00
# this will make an MIC of 12 I, which should be R, so:
2022-10-22 22:00:15 +02:00
breakpoints_new <- breakpoints_new %>%
mutate(breakpoint_R = ifelse(guideline %like% "EUCAST" & method == "MIC" & log2(breakpoint_R) - log2(breakpoint_S) != 0,
2022-10-30 14:31:45 +01:00
pmax(breakpoint_S, breakpoint_R / 2),
breakpoint_R
))
2022-10-22 22:00:15 +02:00
# fix disks as well
breakpoints_new <- breakpoints_new %>%
mutate(breakpoint_R = ifelse(guideline %like% "EUCAST" & method == "DISK" & breakpoint_S - breakpoint_R != 0,
2022-10-30 14:31:45 +01:00
breakpoint_R + 1,
breakpoint_R
))
2022-10-29 14:15:23 +02:00
# fix missing R breakpoint where there is an S breakpoint
breakpoints_new[which(is.na(breakpoints_new$breakpoint_R)), "breakpoint_R"] <- breakpoints_new[which(is.na(breakpoints_new$breakpoint_R)), "breakpoint_S"]
2022-10-22 22:00:15 +02:00
# check again
breakpoints_new %>% filter(guideline == "EUCAST 2022", ab == "AMC", mo == "B_[ORD]_ENTRBCTR", method == "MIC")
# compare with current version
2023-01-21 23:47:20 +01:00
clinical_breakpoints %>% filter(guideline == "EUCAST 2022", ab == "AMC", mo == "B_[ORD]_ENTRBCTR", method == "MIC")
2022-10-22 22:00:15 +02:00
# Save to package ----
2023-01-21 23:47:20 +01:00
clinical_breakpoints <- breakpoints_new
usethis::use_data(clinical_breakpoints, overwrite = TRUE, compress = "xz", version = 2)
rm(clinical_breakpoints)
2019-09-20 12:33:05 +02:00
devtools::load_all(".")