### An [R package](https://www.r-project.org) to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and work with antibiotic properties by using evidence-based methods.
This R package was created for academic research by PhD students of the Faculty of Medical Sciences of the [University of Groningen](https://www.rug.nl) and the Medical Microbiology & Infection Prevention (MMBI) department of the [University Medical Center Groningen (UMCG)](https://www.umcg.nl).
<ahref="https://orcid.org/0000-0001-7620-1800"><imgsrc="https://cran.r-project.org/web/orcid.svg"height="16px"></a> Matthijs S. Berends<sup>1,2,a</sup>,
<ahref="https://orcid.org/0000-0001-5809-5995"><imgsrc="https://cran.r-project.org/web/orcid.svg"height="16px"></a> Christian F. Luz<sup>1,a</sup>,
<sup>1</sup> Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands - [rug.nl](http://www.rug.nl) [umcg.nl](http://www.umcg.nl)<br>
<sup>2</sup> Certe Medical Diagnostics & Advice, Groningen, the Netherlands - [certe.nl](http://www.certe.nl)<br>
1. It **cleanses existing data**, by transforming it to reproducible and profound *classes*, making the most efficient use of R. These functions all use artificial intelligence to guess results that you would expect:
* Use `as.bactid` to get an ID of a microorganism. The IDs are quite obvious - the ID of *E. coli* is "ESCCOL" and the ID of *S. aureus* is "STAAUR". The function takes almost any text as input that looks like the name or code of a microorganism like "E. coli", "esco" and "esccol". Even `as.bactid("MRSA")` will return the ID of *S. aureus*. Moreover, it can group all coagulase negative and positive *Staphylococci*, and can transform *Streptococci* into Lancefield groups. To find bacteria based on your input, this package contains a freely available database of ~2,650 different (potential) human pathogenic microorganisms.
* Use `as.rsi` to transform values to valid antimicrobial results. It produces just S, I or R based on your input and warns about invalid values. Even values like "<=0.002; S" (combined MIC/RSI) will result in "S".
* Use `as.mic` to cleanse your MIC values. It produces a so-called factor (called *ordinal* in SPSS) with valid MIC values as levels. A value like "<=0.002; S" (combined MIC/RSI) will result in "<=0.002".
* Use `as.atc` to get the ATC code of an antibiotic as defined by the WHO. This package contains a database with most LIS codes, official names, DDDs and even trade names of antibiotics. For example, the values "Furabid", "Furadantin", "nitro" all return the ATC code of Nitrofurantoine.
* Use `first_isolate` to identify the first isolates of every patient [using guidelines from the CLSI](https://clsi.org/standards/products/microbiology/documents/m39/) (Clinical and Laboratory Standards Institute).
* You can also identify first *weighted* isolates of every patient, an adjusted version of the CLSI guideline. This takes into account key antibiotics of every strain and compares them.
* Use `MDRO` (abbreviation of Multi Drug Resistant Organisms) to check your isolates for exceptional resistance with country-specific guidelines or EUCAST rules. Currently, national guidelines for Germany and the Netherlands are supported.
* The data set `microorganisms` contains the family, genus, species, subspecies, colloquial name and Gram stain of almost 2,650 microorganisms (2,207 bacteria, 285 fungi/yeasts, 153 parasites, 1 other). This enables resistance analysis of e.g. different antibiotics per Gram stain. The package also contains functions to look up values in this data set like `mo_genus`, `mo_family` or `mo_gramstain`. Since it uses `as.bactid` internally, AI is supported. For example, `mo_genus("MRSA")` and `mo_genus("S. aureus")` will both return `"Staphylococcus"`. These functions can be used to add new variables to your data.
* The data set `antibiotics` contains the ATC code, LIS codes, official name, trivial name and DDD of both oral and parenteral administration. It also contains a total of 298 trade names. Use functions like `ab_official` and `ab_tradenames` to look up values. As the `mo_*` functions use `as.bactid` internally, the `ab_*` functions use `as.atc` internally so it uses AI to guess your expected result. For example, `ab_official("Fluclox")`, `ab_official("Floxapen")` and `ab_official("J01CF05")` will all return `"Flucloxacillin"`. These functions can again be used to add new variables to your data.
* Calculate the resistance (and even co-resistance) of microbial isolates with the `portion_R`, `portion_IR`, `portion_I`, `portion_SI` and `portion_S` functions. Similarly, the *amount* of isolates can be determined with the `count_R`, `count_IR`, `count_I`, `count_SI` and `count_S` functions. All these functions can be used [with the `dplyr` package](https://dplyr.tidyverse.org/#usage) (e.g. in conjunction with [`summarise`](https://dplyr.tidyverse.org/reference/summarise.html))
All versions of this package [are published on CRAN](http://cran.r-project.org/package=AMR), the official R network with a peer-reviewed submission process.
(Note: Downloads measured only by [cran.rstudio.com](https://cran.rstudio.com/package=AMR), this excludes e.g. the official [cran.r-project.org](https://cran.r-project.org/package=AMR))
This is the latest development version. Although it may contain bugfixes and even new functions compared to the latest released version on CRAN, it is also subject to change and may be unstable or behave unexpectedly. Always consider this a beta version. All below 'badges' should be green.
Development Test | Result
--- | :---:
Works on Linux and macOS | [![Travis_Build](https://travis-ci.org/msberends/AMR.svg?branch=master)](https://travis-ci.org/msberends/AMR)
Works on Windows | [![AppVeyor_Build](https://ci.appveyor.com/api/projects/status/github/msberends/AMR?branch=master&svg=true)](https://ci.appveyor.com/project/msberends/AMR)
This package contains two new S3 classes: `mic` for MIC values (e.g. from Vitek or Phoenix) and `rsi` for antimicrobial drug interpretations (i.e. S, I and R). Both are actually ordered factors under the hood (an MIC of `2` being higher than `<=1` but lower than `>=32`, and for class `rsi` factors are ordered as `S < I < R`).
Both classes have extensions for existing generic functions like `print`, `summary` and `plot`.
The `septic_patients` data set comes with antimicrobial results of more than 40 different drugs. For example, columns `amox` and `cipr` contain results of amoxicillin and ciprofloxacin, respectively.
It also supports grouping variables. Let's say we want to compare resistance of drugs against Urine Tract Infections (UTI) between hospitals A to D (variable `hospital_id`):
Bacteria IDs can be retrieved with the `guess_bactid` function. It uses any type of info about a microorganism as input. For example, all these will return value `STAAUR`, the ID of *S. aureus*:
Base R lacks a simple function to create frequency tables. We created such a function that works with almost all data types: `freq` (or `frequency_tbl`). It can be used in two ways:
This R package is licensed under the [GNU General Public License (GPL) v2.0](https://github.com/msberends/AMR/blob/master/LICENSE). In a nutshell, this means that this package: